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1. Motivation 2. Method: Group-adapted Fusion Network (GFN)
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¢ Evidence that imbalanced dataset composition
leads to SV model unfairness to under-
represented groups. (Section 4)
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¢ Propose a flexible, modular model to

alleviates model unfairness. (Section 2) ¢ The back-end score fusion model combines P e

all scores for speaker verification.

4. Resuits and Findings
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