Improving Fairness in Speaker Verification Via Group-Adapted Fusion Network

Hua Shen*, Yuguang Yang*, Guoli Sun, Ryan Langman, Eunjung Han, Jasha Droppo, Andreas Stolcke

1. Motivation

Speaker Verification (SV) Models

- The performance of speaker verification (SV) models has dramatically improved due to **deep** learning algorithms and large-scale datasets.
- SV models typically have two stages: **encoding** speech embeddings (front-end) and scoring function (back-end).

2. Method: Group-adapted Fusion Network (GFN)

PennState

amazon alexa

amazon | science @ ICASSP

2022

Model Unfair Performance

- Models are optimized to **differentiate arbitrary speakers**' voice characteristics in training.
- This learning process can lead to model unfairness across groups.

Contributions

- Create well-designed training and evaluation data sets and metrics for analyzing SV model fairness (using gender as a test case) (Section 3)
- Evidence that **imbalanced dataset composition** leads to SV model unfairness to underrepresented groups. (Section 4)
- Propose a flexible, modular model to alleviates model unfairness. (Section 2)

3. Fairness Datasets and

Evaluation Metrics

Gender Trials	Trial Count	VoxCeleb1-F		
		[F]	[M]	[All]
Positive F-F	150,000	\checkmark		\checkmark
Negative F-F	150,000	\checkmark		\checkmark
Negative M-F	150 000	\checkmark	\checkmark	\checkmark

Cause of Model Unfairness

◆ Increasing dominance of one gender group in training set (e.g., 4:1 and 9:1) leads to increasing performance gap (DS scores) and model unfairness.

Improving Fairness with GFN

 Proposed GFN model achieves better group-wise and overall EER than baselines.

Evaluation Metrics

We define three model fairness metrics based on **Equal Error Rate (EER).**

♦ Group-wise EER Female-group: EER[F], Male-group: EER[M]

◆ Overall EER EER [All]

Disparity Score (DS)

DS = |EER[F] - EER[M]|

-12.5 -20 10 (b) Visualization of learned speaker embeddings using t-SNE • GFN (c) generates more compact embedding clusters than the baseline (b).

Acknowledgments

1:9

We thank our colleague Victor Rozgic and Amazon Alexa Speaker Understanding team members and managers for their input and support.

Open-sourced Datasets: https://github.com/huashen218/Voxceleb-Fairness.git