

Are Shortest Rationales the Best Explanations for Human Understanding?

⁺Hua Shen,

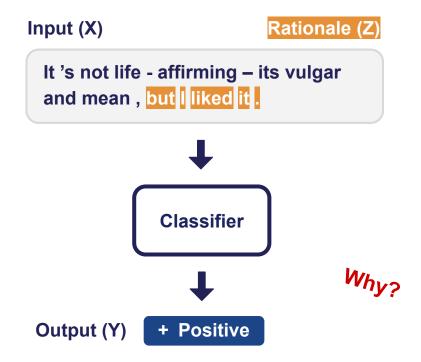
[♦] Tongshuang Wu,

*Wenbo Guo, *Ting-Hao 'Kenneth' Huang

[†]The Pennsylvania State University,

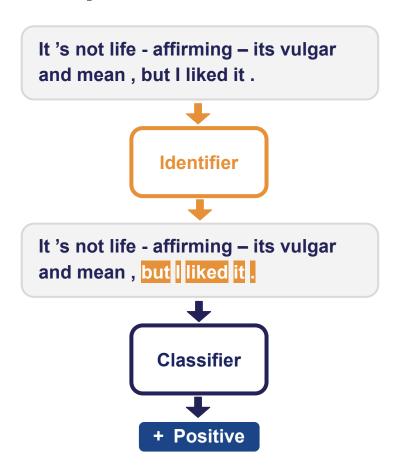
[♦]University of Washington

Interpretation with rationales



Rationale: a sufficient subset of input text to explain the model's prediction.

Self-explainable rationalizing methods

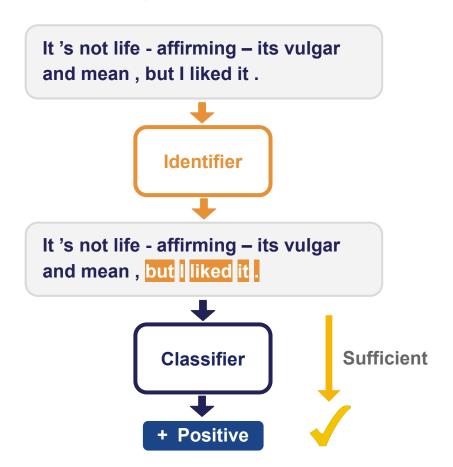


What is a good rationale?

Sufficiency

Conciseness

What is a good rationale?



Sufficiency

Sufficient subset of input to predict correct label

What is a good rationale?

Conciseness

Rationale length to be as short as possible

Length (k)		<u>Predict</u>
k=20%	It 's not life - affirming – its vulgar and mean , but I liked it .	+
k=30%	It 's not life - affirming – its vulgar and mean , but liked it.	+
k=40%	It 's not life - affirming – its vulgar and mean, but liked it.	+
••••		
k=100%	It 's not life - affirming - its vulgar and mean, but I liked it.	+

Conciseness: To be validated...

Conciseness

Yet to be validated by human studies .

Length (k)		Predict
k=20%	It 's not life - affirming – its vulgar and mean , but I liked it .	+
k=30%	It 's not life - affirming – its vulgar and mean , but liked it.	+
k=40%	It 's not life - affirming – its vulgar and mean, but liked it.	+
••••		
k=100%	It 's not life - affirming – its vulgar and mean, but I liked it.	+

<u>Implicit Assumption: "shorter rationales are more intuitive to humans"</u>

"Are Shortest Rationales the Best Explanations for Human Understanding?"

How does rationale length affect human understanding?

Core Statement

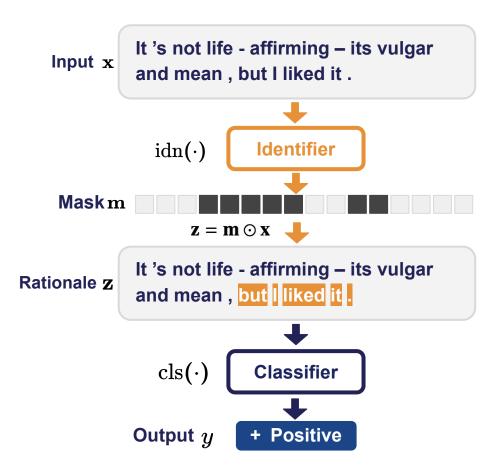
We find that shortest rationales are largely NOT the best for human understanding!

Method

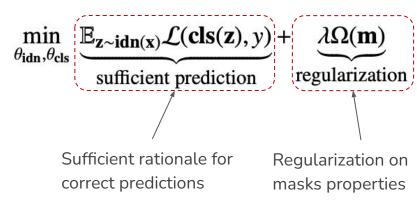
 We design a self-explaining model, LimitedInk, which allows users to extract rationales at any target length.

 We conduct user studies to investigate the effect of rationale length on human understanding using LimitedInk.

LimitedInk: A self-explaining model with rationale length control



Optimization Objective



How to control rationale length in LimitedInk

Control Rationale Length

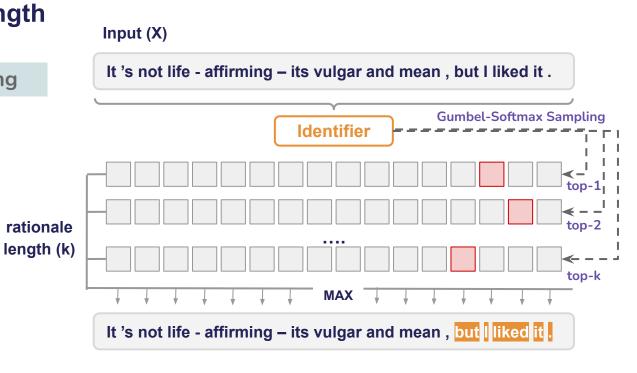
Gumbel-Softmax Sampling

Vector and Sort Regularization

How to control rationale length in LimitedInk

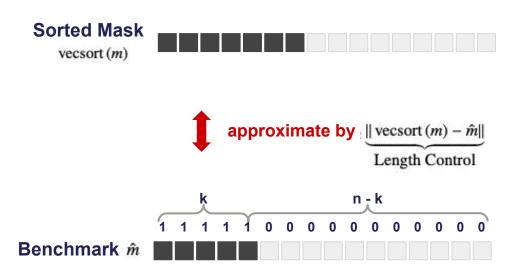
Control Rationale Length

Gumbel-Softmax Sampling



How to control rationale length in LimitedInk

Vector and Sort Regularization



LimitedInk Performance

Evaluation Metrics

- End-task classification: Task, weighted average F1
- Human-annotated rationale agreement: Precision, Recall, Token-level F1

Method	Movies			BoolQ				Evidence Inference				MultiRC				FEVER				
	Task	P	R	F1	Task	P	R	F1	Task	P	R	F1	Task	P	R	F1	Task	P	R	F1
Full-Text	.91	-	-		.47	-	-	-	.48	-:	-	-	.67	-	-	-	.89	-	-	-
Sparse-N	.79	.18	.36	.24	.43	.12	.10	.11	.39	.02	.14	.03	.60	.14	.35	.20	.83	.35	.49	.41
Sparse-C	.82	.17	.36	.23	.44	.15	.11	.13	.41	.03	.15	.05	.62	.15	.41	.22	.83	.35	.52	.42
Sparse-IB	.84	.21	.42	.28	.46	.17	.15	.15	.43	.04	.21	.07	.62	.20	.33	.25	.85	.37	.50	.43
LIMITEDINK Length Level	(1890	.26	.50	.34	.56	.13	.17	.15	.50	.04	.27	.07	.67	.22	.40	.28	.90	.28	.67	.39
Length Level	(K)	50	%			30	%			50	%			50	%			40	%	

Results

LimitedInk performs compatible with three SOTA baselines on the two common rationale metrics in five ERASER text classification benchmark datasets.

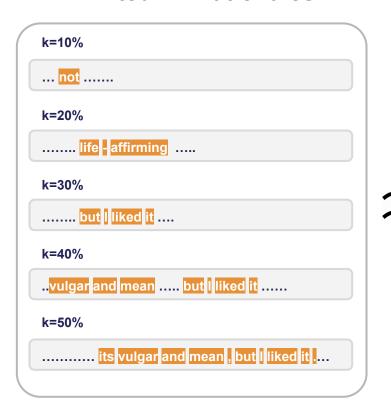
Human Study: description of dataset and human task



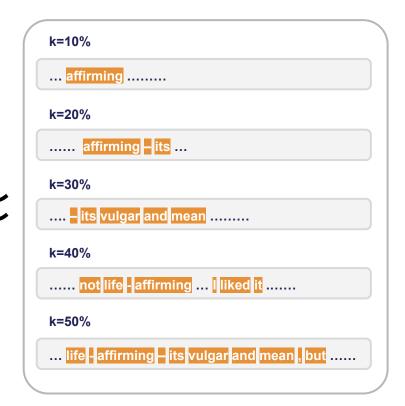
Key Components of the User Interface

Human Study: preparing rationales

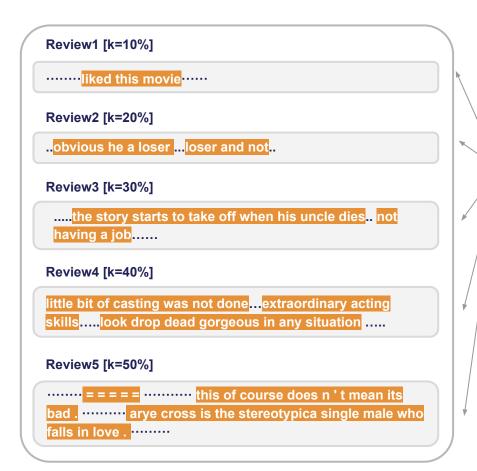
LimitedInk Rationales



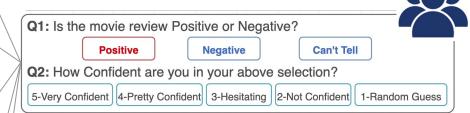
Random Baseline



Human Study: effect of rationale length on human understanding



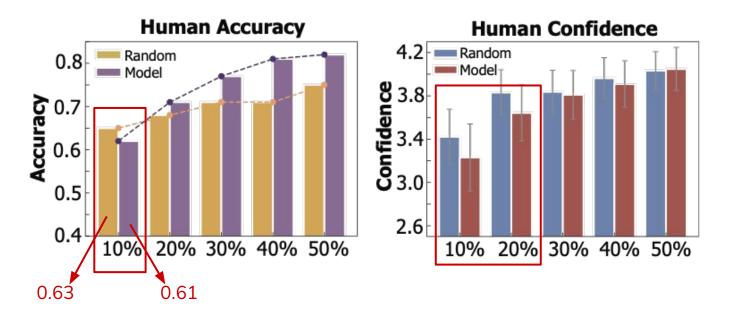
Rationales in one Webpage



We **strictly control** the workers' **participation**.

Therefore, participants cannot see the same review repeatedly to gradually see all the words.

Key Findings



Human accuracy and confidence, at the shortest level (i.e., 10% length), are lower than the random baseline

The shortest rationales are NOT the best for human understanding.

Key Findings

_	th level (%) tract. method	Negative P/R/F1	Positive P / R / F1					
10%	LimitedInk Random	0.66 / 0.56 / / 0.61 0.67 / 0.57 / 0.62	0.70 / 0.58 / 0.64 0.66 / 0.70 / 0.68					
20%	LimitedInk Random	0.75 / 0.61 / 0.67 0.69 / 0.60 / 0.64	0.71 / 0.77 / 0.74 0.68 / 0.74 / 0.71					
30%	LimitedInk Random	0.74 / 0.76 / 0.75 0.72 / 0.61 / 0.66	0.81 / 0.78 / 0.79 0.72 / 0.78 / 0.75					
40%	LimitedInk Random	0.84 / 0.76 / 0.80 0.79 / 0.63 / 0.70	0.78 / 0.85 / 0.81 0.65 / 0.79 / 0.71					
50%	LimitedInk Random	0.78 / 0.78 / 0.78 0.77 / 0.63 / 0.70	0.85 / 0.84 / 0.85 0.75 / 0.84 / 0.79					

Human performance (i.e., Precision / Recall / F1 Score) on each category;

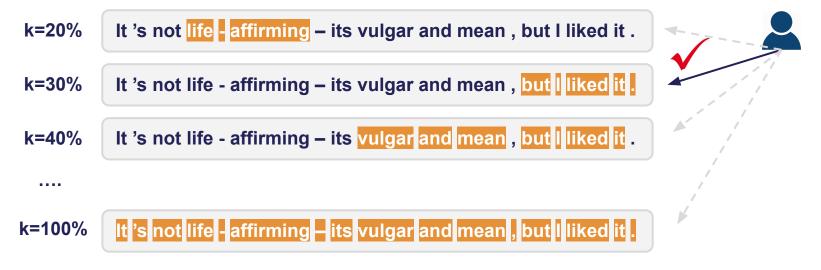
Again, the shortest rationales are NOT the most human-understandable.

Take-away Message

Shortest rationales are largely NOT the best for human understanding

Discussion: Rethink how to define a good rationale?

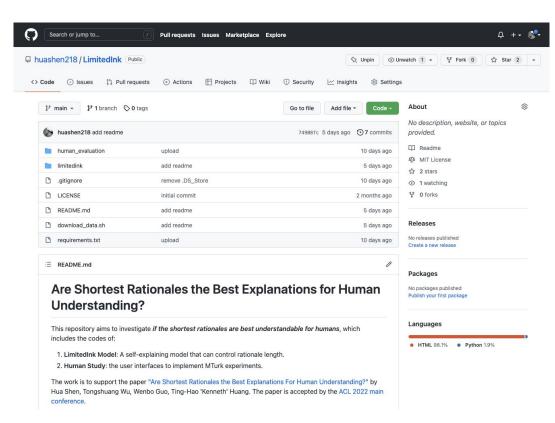
Length (k)



*

Learn to find the **right balance** between the **rationale length** and **model accuracy**.

Github: https://github.com/ huashen218/LimitedInk.git



of LimitedInk and Human Study at Github!

Hua Shen

Mashen218@psu.edu

@SarahHShen1

Tongshuang (Sherry) Wu

wtshuang@cs.washington.edu

@tongshuangwu

Wenbo Guo

✓ wzg13@psu.edu

Ting-Hao 'Kenneth' Huang

xh710@psu.edu

windx0303

Thank you!