Are Shortest Rationales the Best **Explanations for Human Understanding?**

Gumbel-Softmax Sampling

Hua Shen, Tongshuang Wu, Wenbo Guo, Ting-Hao 'Kenneth' Huang

1. Motivation

- Self-explaining models typically extract shortest possible rationales — snippets of an input text "responsible for" corresponding output — to explain the model prediction.
- ◆ Based on the common assumption "shorter rationale is better for human understanding". However, this has yet to be validated.

LimitedInk: A self-explaining model with Rationale Length Control

A1 Rationale Length A2 Rationale Generation Prediction Score A3 k=10% It 's not life - affirming -- its vulgar and mean , but I liked it . Y=Neg k=20% It 's not life - affirming -- its vulgar and mean , but I liked it . Y=Pos Good Explanation (A4) k=30% It 's not life - affirming -- its vulgar and mean , but I liked it . Y=Pos k=40% It 's not life - affirming -- its vulgar and mean , but I liked it . Y=Pos k=50% It 's not life - affirming -- its vulgar and mean , but I liked it . Y=Pos

3. Methodology

huashen218@psu.edu

i) Design a novel self-explaining model, LimitedInk, to control rationale length.

Input X It 's not life - affirming -- its vulgar and mean , but I liked it . Y=Pos

IDENTIFIER

B. Contextual Rationale Generation

2. Research Object

Is the shortest rationale indeed the most humanunderstandable?

Our goal is to study the unexplored effect of rationale length on human understanding.

4. Results and Key Findings

We find that shortest rationales are largely NOT the best for human understanding.

A. Control on Rationale Length B2 With Contextual Information Input X It 's not life - affirming -- its vulgar and mean , but I liked it . Y=Pos

C. Continuity Regularization

k=40% It 's not life - affirming -- its vulgar and mean, but I liked it . Y=Pos

(C2) With Continuity

C1 No Continuity

k=40% It 's not life - affirming -- its vulgar and mean , but I liked it . Y=Pos

LimitedInk Performance

Method	Movies			BoolQ				Evidence Inference			MultiRC				FEVER					
	Task	Р	R	F1	Task	Р	R	F1	Task	Р	R	F1	Task	Р	R	F1	Task	Р	R	F1
Full-Text	.91	-	-	-	.47	-	-	-	.48	-	-	-	.67	-	-	-	.89	-	-	-
Sparse-N Sparse-C	.79 .82	.18 .17 21	.36 .36	.24 .23	.43 .44	.12 .15	.10 .11	.11 .13	.39 .41	.02 .03	.14 .15 21	.03 .05	.60 .62	.14 .15	.35 .41	.20 .22	.83 .83	.35 .35	.49 .52	.41 .42
LIMITEDINK	.04 .90	.26	.50	.20	.40	.13	.17	.15	.43	.04	.21	.07	.67	.20	.40	.23	.85 .90	.28	.50	.39
ength Level		50	%			30	%			50	%			50	%			40%	%	

LimitedInk performs compatible with baselines in 5 ERASER text classification benchmark datasets: w.r.t. rationale metrics:

end-task performance (Task, weighted average F1);

- Humans get worse **prediction accuracy** and **confidence** when rationales are too short (e.g., 10% length) than random baseline.
- The eventually flattened slope of model's accuracy potentially suggests a sweet spot to balance human understanding on rationale length and model accuracy.

lengt	h level (%)	Negative	Positive			
& Ext	ract. method	P / R / F1	P/R/F1			
10%	LimitedInk	0.66 / 0.56 / / 0.61	0.70 / 0.58 / 0.64			
	Random	0.67 / 0.57 / 0.62	0.66 / 0.70 / 0.68			
20%	LimitedInk	0.75 / 0.61 / 0.67	0.71 / 0.77 / 0.74			
	Random	0.69 / 0.60 / 0.64	0.68 / 0.74 / 0.71			
30%	LimitedInk	0.74 / 0.76 / 0.75	0.81 / 0.78 / 0.79			
	Random	0.72 / 0.61 / 0.66	0.72 / 0.78 / 0.75			
40%	LimitedInk	0.84 / 0.76 / 0.80	0.78 / 0.85 / 0.81			
	Random	0.79 / 0.63 / 0.70	0.65 / 0.79 / 0.71			

human annotated rationale agreement (Precision, Recall, F1).

0.78 / 0.78 / 0.78 0.85 / 0.84 / 0.85 LIMITEDINK 50% 0.77 / 0.63 / 0.70 0.75 / 0.84 / 0.79 Random

Human performance on predicting model labels of each category, including Precision / Recall / F1 Score.

The Workflow of Human Evaluation

	* Future work could more cautiously define the best rationales for human understanding, then find the right balance between model
J. KGY	accuracy and rationale length.
Insights	* More concrete, one promising way could be to clearly define the optimal human interpretability in a measurable way and then learn

human interpretability in a measurable way and then learn to adaptively select rationale with appropriate length.

Open-source code: <u>https://github.com/huashen218/LimitedInk.git</u>