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Abstract

Despite recognizing that Large Language Models (LLMs) can

generate inaccurate or unacceptable responses, universities are

increasingly making such models available to their students.

Existing university policies defer the responsibility of checking

for correctness and appropriateness of LLM responses to stu-

dents and assume that they will have the required knowledge

and skills to do so on their own. In this work, we conducted a

series of user studies with students (N=47) from a large North

American public research university to understand if and how

they critically engage with LLMs. Our participants evaluated

an LLM provided by the university in a quasi-experimental

setup; first by themselves, and then with a scaffolded design

probe that guided them through an end-user auditing exer-

cise. Qualitative analysis of participant think-aloud and LLM

interaction data showed that students without basic AI liter-

acy skills struggle to conceptualize and evaluate LLM biases

on their own. However, they transition to focused thinking

and purposeful interactions when provided with structured

guidance. We highlight areas where current university policies

may fall short and offer policy and design recommendations

to better support students.
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Content Warning: This paper covers user-led audits of

a Large Language Model (LLM). Parts of this paper refer-

ence user-generated content containing offensive or hateful

speech, profanity, and content pertaining to potentially trig-

gering topics.

1 Introduction

Critical engagement with AI [40, 60] enables end-users to

analyze, question, and contest information generated from

Large Language Models (LLMs) in consequential settings (i.e.,

environments where the outcomes significantly impact indi-

viduals or society), such as education [58, 113]. By developing

AI literacy competencies [73] that help understand AI limita-

tions and ethical implications, end-users can exercise critical

thinking to evaluate errors [123], biases [85], and “hallucina-

tions” [56, 124] of LLMs—believable but factually inaccurate

responses. For example, users can exercise critical thinking to

determine the reliability of LLM-generated information [116]

and safeguard themselves from misinformation [63, 75].

Having recognized that LLMs can generate incorrect or

unacceptable responses, universities increasingly caution stu-

dents (i.e., individuals who attend the university to study and

learn, such as undergraduates, graduate students, and fellows)

to verify LLM outputs for accuracy and appropriateness. How-

ever, existing university policies [13, 45, 47, 51, 90, 105, 112]

do not specify how to evaluate LLMs or what to look for in

their responses. Those guidelines assume students already

have the required skills to evaluate LLMs, causing stress and

uncertainty for those who lack those skills [1, 20].

https://orcid.org/0000-0003-0179-4466
https://orcid.org/0009-0000-8758-3437
https://orcid.org/0009-0008-8522-8843
https://orcid.org/0000-0001-9912-8757
https://orcid.org/0000-0002-4928-525X
https://orcid.org/0000-0002-2790-3264
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3706598.3713714
https://doi.org/10.1145/3706598.3713714


CHI ’25, April 26-May 1, 2025, Yokohama, Japan Prabhudesai, et al.

Although students with computer science backgrounds

could have sufficient AI literacy [50], the lack of similar levels

of AI literacy in students from non-technical backgrounds [62,

110] places them at a significant disadvantage under current

guidelines, exacerbating academic inequalities [40]. Universi-

ties increasingly offer coursework that teaches students across

disciplines what LLMs are [52, 58] and how to use them [77,

80]; yet, most such coursework similarly only cautions stu-

dents about the limitations of LLMs. Thus, current university

policies force students to shoulder the responsibility of eval-

uating LLMs on their own; and failing that, risk academic

penalties, including charges of plagiarism and expulsion [23].

Unfortunately, LLMs generate responses that project a sense

of authority [54] and infallibility [18], which could lead end-

users to overrely on such technology [8, 16, 33, 53]. Although

there is a potential for end-users to identify [29, 107] and docu-

ment [39] AI bias through end-user audits [68, 103], with a few

notable cases of end-users successfully auditing AI systems on

their own [49, 59], it is unclear if and to what degree suchmeth-

ods lead to methodical investigation of LLMs among students

to support them in shouldering the burden of evaluation.

In this work, we conducted a formative study to investigate

how and to what extent students can critically engage with

LLMs to identify biases and evaluate harms on their own. We

answer the following research questions:

RQ1: To what extent are students able to identify harmful

biases in LLMs by themselves following existing uni-

versity policy and recommendations?

RQ2: How does providing students with an end-user audit-

ing scaffolding affect their approach to identifying and

documenting bias in LLMs?

RQ3: What are the design opportunities for helping non-

technical and low AI literacy students to deal with bi-

ases in LLMs?

To answer these research questions, we developed a design

probe named PromptAuditor, featuring a main interface to

chat with an LLM and a scaffolding informed by CS education

experts. We adopted a quasi-experimental study design
1
from

education and policy literature [22, 102] to develop an end-user

auditing protocol for identifying biases in LLMs. In our study

design, participants performed an end-user audit [29, 68, 103]

of an LLM using PromptAuditor in three stages: 1) first with

minimal guidance, akin to existing university guidelines, 2)

then with a scaffolding that guided participants step-by-step

through a worked auditing example of LLM bias, and 3) then

again independently, with the scaffolding removed.

We instantiated this protocol across two user studies with

participants (N=47) at a large North American public research

university. In the first study, we recruited students from di-

verse academic disciplines (N=8) by word of mouth, to study

their cognitive and decision-making processes while interact-

ing with our probe, which we elicited in a lab study using

1
While allowing for comparison of pre-and-post guidance, a quasi-experimental

design is more aligned to naturalistic settings where random assignment to

control and treatment groups may be impracticable or unethical.

a think-aloud protocol [55]. In the second study, we studied

in situ behavior of students from two different cohorts with

different backgrounds and levels of AI literacy; one with class-

room students (N=30) at the end of a semester-long course

on Generative AI from an arts and sciences department, and

the other with attendees of an AI workshop for journalism

fellows (N=9), after an hour-long introductory AI lecture. In

both studies, we collected and performed qualitative analy-

sis of interaction data with the study software and GPT (i.e.,

Generative Pre-trained Transformers) conversation logs.

Our results highlight that students with stronger AI literacy

and technical backgrounds are better equipped to conduct

comprehensive evaluation of biases in AI systems. Structured

guidance provides a focused scope for thinking about bias

hypothesis as students transition from confusion and struggle

to understanding sociotechnical aspects of bias propagation.

After receiving such guidance, students’ interactionwith LLMs

transitions from random prompting on diverse subjects to

focused evaluation of biases in a specific domain.

Ourwork contributes empirical knowledge on how students

critically engage in everyday algorithmic auditing of LLMs.

Our work points to specific gaps in existing university policies,

such as a lack of consideration of students’ diverse levels of

AI literacy, which affects their ability to critically engage with

LLMs. Our work motivates future interface designs that can

promote critical thinking in everyday interactions. We invite

researchers to adopt a learner-centered lens when designing

interfaces and policies that support critical engagement.

2 Background and Related Work

Critical engagement with LLMs is an active topic of research in

various communities, from pedagogy [73, 86] and educational

policies [19, 126] to Human-Computer Interaction (HCI) [34].

Here, we first highlight literature from cognitive psychology,

pedagogy, and computer science education to explain the role

of AI literacy in fostering critical engagement. Next, we briefly

discuss gaps in current university LLM policies, which def-

fer critical evaluation to students. Then, we point to existing

approaches to support users in evaluating AI technologies.

2.1 Critical Thinking and AI Literacy

Critical thinking [35, 41] is a higher-order, analytical think-

ing process [114] that requires deliberate effort to analyze,

evaluate and judge the credibility of information [57, 65]. Ed-

ucational psychology and cognitive science [83, 98] state that

both declarative (knowing what) and procedural (knowing

how) knowledge are required for critical thinking in educa-

tional settings [4]. Exercising critical thinking when interact-

ing with LLMs makes users less susceptible to errors [123],

biases [85], and “hallucinations” [56, 124]. Critical thinking

can induce healthy skepticism and promote appropriate re-

liance on AI [95]. This can safeguard users from harms such

as misinformation [63, 75] and conspiracy theories [91].

AI literacy [73, 86] enables end-users to apply foundational

skills of critical thinking to evaluate AI technologies. However,
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Figure 1: Examples of university guidelines [13, 51, 90, 105, 112] regarding the use of GPT tools. The guidelines strongly

indicate the student’s responsibility to review all AI-generated content for “appropriateness” without stating how.

an overwhelming majority of the public is not AI literate [120].

Raising public AI literacy requires deliberate effort from de-

sign, policy, and education [74] to engage the public using both

formal [58, 113] and informal [71, 72, 87] educational interven-

tions. Such efforts have the potential to engage a broader set

of stakeholders, including children [25, 115], middle school-

ers [9], and youth [125], to acquire AI literacy skills.

Educational institutions are increasingly offering structured

classroom instruction to teach LLMs and related technologies,

covering some skills and knowledge for interacting with gener-

ative AI [5, 52, 121]. However, even if those courses teachwhat
biases and other undesirable outcomes LLMs can produce, that

may not immediately transfer to practical knowledge on how
to identify and document those biases and outcomes.

2.2 Educational Policies for LLMs

With the advent of ChatGPT in November 2022 [92], univer-

sities lacked clear guidelines and policies for the use of LLM

technologies in academic settings [32, 119]. After educators ex-

pressed concerns (e.g., potential for plagiarism [84], decline in

students’ critical thinking skills due to excessive GPT use [20],

and unreflected acceptance of GPT responses [64]), many uni-

versities formed interdisciplinary committees [88, 89] to draft

comprehensive policies. Such committees involved educators,

technologists, and ethicists, with students’ voices largely ab-

sent [19, 126]. Being designed as an extension of academic dis-

honesty policies [46, 47, 79], the consequences of not following

those university guidelines on LLMs can result in charges of

academic dishonesty and even expulsion [23].

Most existing university guidelines [13, 45, 47, 51, 90, 105,

112] caution students to check LLM responses for accuracy

and appropriateness (Figure 1). Those policies not only burden

students with evaluating and debugging a still experimental

and error-prone computational technology, but also assume

that all students have high AI literacy and relevant competen-

cies to perform this difficult task [14]. Few of those policies,

if any, recognize the ability of AI to deceive [8], project infal-

libility [18], and affect students’ views [54]. This points to a

crucial need to investigate how and to what extent students
can effectively follow the existing guidelines on their own and

avoid any repercussions of wrong or undesirable LLM outputs.
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2.3 Interactive Tools for AI Evaluation

The HCI research community [3, 31, 68, 118] has long recog-

nized the importance of supporting end-users in evaluating AI

in everyday interactions. By providing insights into the AI’s

inner-working and decision-making, explanation mechanisms

that promote transparency [96, 104] are meant to help end-

users identify and reject AI decisions in situations in which

its reasoning was incorrect [101]. However, most existing ex-

planation mechanisms tend to act as evidence of reliability

rather than accountability [16, 26], often deceiving end-users

into over-relying on AI [53, 67]. Also, such mechanisms do not

directly translate to the context of LLMs [34], where problems

of over-reliance could be exacerbated [54].

Algorithmic auditing methods [15, 81] have been effective

in identifying and documenting the weaknesses of algorithmic

systems deployed in both public [37] and private [97] sectors.

While traditionally catering to system developers [7, 100], re-

cent work has focused on the potential for adopting the meth-

ods for end-users to identify and document AI bias [27, 68, 107].

Work on everyday algorithm auditing [29, 103] has docu-

mented how end-users audit AI in everyday interactions, in-

cluding how it helps raise their awareness and ability to hy-

pothesize, evaluate, and surface harm. However, it is unclear if

and to what degree such methods can lead to methodical LLM

evaluation among students to support them in shouldering

the burden of critical engagement with LLMs.

3 Method for Probing Students Declarative

and Procedural Knowledge of Auditing

We studied how and to what extent students (i.e., individuals

who attend the university to study and learn) can critically en-

gage with LLMs.We explored how their declarative knowledge

(i.e., knowing what) and procedural knowledge (i.e., knowing

how) impact their cognitive processes and interaction behavior

when auditing an LLM. To answer our research questions, we

used a quasi-experimental study design (Fig. 2) where students

with different levels of AI literacy interacted with our study

probe, PromptAuditor. Henceforth, in Sections 3 and 4, we

refer to students who took part in our studies as “participants”.

3.1 Operationalizing University Guidelines

We conducted our user studies at the University of Michigan

(U-M), a large public research university in North America.

Since 2023, U-M has invested $180 million in a partnership

with Microsoft and OpenAI [78, 94] to be one of the first in-

stitutions to develop a suite of Generative AI (GenAI) models

for use within the university. Despite students and staffs’ con-

cerns [109], the university cited privacy and innovation as its

key motivations for developing this suite. In addition to GenAI

tools, U-M released learning resources, including courses and

online materials. We used the GPT-3.5 Turbo model and inter-

face (called “U-M GPT”) from this suite for our study.

The real-world university setting enhanced ecological va-

lidity and allowed us to observe students’ interactions with

LLMs in an authentic learning environment. We further op-

erationalized and integrated U-M’s high-level guidelines (i.e.,

acknowledging that U-M GPT may produce biased, harmful,

or inaccurate information) into the design of study probes and

tasks. We framed critical evaluation as an everyday end-user

auditing activity [68, 103], as it closely mirrors real-world sce-

narios where students must critically engage with AI tools

without extensive prior training. We designed PromptAudi-

tor as a design probe to collect data while auditing LLMs.

3.2 PromptAuditor

Here, we describe the design elements, rationale, and imple-

mentation of our study probe, PromptAuditor (Fig. 3). Par-

ticipants interacted with the main interface A in all study

stages (Fig. 2): 1) pre-scaffolding, 2) with-scaffolding, and 3)

post-scaffolding. Scaffolding B was activated during the

“with-scaffolding” stage and deactivated afterward.

3.2.1 Main Interface Design. The main interface consists of:

A1 an audit report panel, and A2 a “U-M GPT” chat interface.

The audit report panel A1 , inspired by the IndieLabel sys-

tem [68], allows participants to document findings by filling

out topic, evidence, and summary fields. The chat interface A2

allows participants to issue prompts and view responses from

the underlying GPT-3.5-Turbo model. Note that the design of

the chat interface A2 was based on the existing interface of

U-M GPT (Fig. 7). We piloted different main interface layouts

with non-technical participants (N=5) and confirmed their

preference for the familiar, chat-based layout A2 .

3.2.2 Scaffolding Design and Rationale. To develop our scaf-

folding, we consulted AI education experts and identified scaf-

folding principles: B1 scenario-based learning [106], B2 hy-

pothesis generation [103], B3 worked examples [6], B4 self-

reflection [76], and B5 contrastive learning [43]. We created

initial designs, exploring scenarios relevant to student life and

consulting literature for harms [44], such as student loans [93],

health insurance, and hiring [12]. Through sessions with AI

auditing expert co-authors, we generated worked examples

and selected the most salient one for hiring bias [69]. For

contrastive learning, we tested three prototypes: 1) manual

annotation, 2) automated GPT annotation, and 3) a diff checker

to compare and highlight differences between two LLM output

versions. Pilot participants preferred manual annotations for

their clarity and simplicity, but found GPT annotations more

helpful for revealing subtle contextual differences.

Our final design combined GPT-generated highlights with

the manual review featuring toggled highlights. We iteratively

critiqued the low-fidelity prototypes with our interdisciplinary

team. We tested the final design with two participants, which

revealed no major usability issues. Our scenario-based learn-

ing scaffolding B1 used a scenario of racial bias in the hiring

domain [111]. Here, our worked examples B3 used two cover

letters—one with a Caucasian sounding name (“Christopher

Allen”), and the other with an African American sounding
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Consent 
Form

Start-of-study 
survey Pre-scaffolding End-of-study 

surveyPost-scaffoldingScaffolding

STUDY 1
Lab Study Participants from 
diverse backgrounds 

 

Interaction 
data

Demographic 
Survey

 Verbalisation
data

AI literacy assessment 
survey

Self-reported auditing 
   proficiency survey

 

Declarative knowledgeProcedural knowledge

STUDY 
INSTRUMENTS

STUDY 2

 

 

Stages of quasi-experimental design    

Classroom Participants from 
semester-long GenAI course 

Workshop Participants from 
hour-long intro to AI lecture

Figure 2: Our quasi-experimental study design across two user studies: 1) lab-controlled think-aloud study (N=8), and

2) naturalistic educational environments study (N=39). Symbols in the legend represent the study instruments used to

collect study data and measure different knowledge aspects at different stages of the study.

name (“Latisha Smith”), referenced from prior correspondence

audit work [69] and field experiment on labor market discrimi-

nation [12]. After providing self-explanations B4 , participants

engaged in contrastive learning B5 to examine this bias.

3.2.3 Software Implementation. Our foremost consideration

during the development of the study software was protecting

students’ privacy. Although we initially developed a Chrome

extension, AI education experts raised concerns about poten-

tial risks such as the extension having access to browsing

history and other sensitive data. They were also concerned

about students installing software on personal devices without

fully understanding the risks.

To address these concerns, we migrated to a Django
2
web

application, which does not require installing software on

personal devices. We replicated the U-M GPT interface using

HTML, CSS, and JavaScript
3
, with participant data securely

stored in a MySQL
4
database. For the backend, we accessed

the GPT-3.5 Turbo
5
LLM via the U-M GPT Toolkit

6
, an API

gateway provided by the university that grants programmatic

access to the same models U-M GPT used.

2
https://www.djangoproject.com/

3
https://www.w3.org/wiki/The_web_standards_model_-_HTML_CSS_and_

JavaScript

4
https://www.mysql.com/

5
https://platform.openai.com/docs/models#gpt-3-5-turbo

6
https://its.umich.edu/computing/ai

3.3 Overview of User Studies

We conducted two user studies (Fig. 2): 1) a lab-controlled

think-aloud study (N=8), and 2) a study in naturalistic educa-

tional environments (N=39). We used the lens of integrated

knowledge theory [4] to guide our study design, data collec-

tion, and analysis. This theory offers an educational frame-

work that combines the acquisition of declarative and proce-

dural knowledge with an understanding of students’ learn-

ing performance. We employed a quasi-experimental study

design [22, 102], which has been traditionally employed in

learning science studies to assess student knowledge [42, 99].

We conducted both studies with students at the same North

American public research university, which LLM guidelines

we operationalized (Section 3.1). In both studies, participants

used PromptAuditor to audit U-M GPT in an end-user au-

diting activity [29, 68, 103]. After accessing the study website,

participants reviewed the consent form, completed a pre-study

survey, and watched a brief video on GPT usage.

PromptAuditor then asked them to reflect on potential

LLM harms. In the pre-scaffolding stage, participants per-

formed a 10-minute audit using the main interface with min-

imal guidance and without the scaffolding. During the scaf-

folding stage, the scaffolding guided them through a worked

example of LLM bias. In the post-scaffolding stage, participants

completed another 10-minute audit on their own. Below, we

outline differences between the studies, including participants,

methods, data collection, and analysis.

https://www.djangoproject.com/
https://www.w3.org/wiki/The_web_standards_model_-_HTML_CSS_and_JavaScript
https://www.w3.org/wiki/The_web_standards_model_-_HTML_CSS_and_JavaScript
https://www.mysql.com/
https://platform.openai.com/docs/models#gpt-3-5-turbo
https://its.umich.edu/computing/ai
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A B

U-GPT

A2A1

B5 Contrastive
Learning

B1 Scenario-
based 
Learning

B2 Hypothesis
Generation

B3 Worked 
Example

B4 Self-
explanation

Figure 3: Our study interface probe, which we call PromptAuditor has two parts: (A) the main interface, and (B)

scaffolding. Participants interact with (A) in pre-and-post scaffolding phases, using (A1) to type prompts and read

GPT response, and (A2) for bias documentation. In the scaffolding phase, (B) is turned on, which guides participants

step-by-step (B1 - B5) through a worked auditing example.
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3.4 Study 1: Lab-controlled Think-aloud

We studied participants’ cognitive decision-making processes

using a think-aloud protocol in a controlled lab environment.

3.4.1 Participants. We recruited eight participants using fly-

ers and word-of-mouth. All participants were 18 years or older,

and studied in diverse fields, ranging from Biology to Software

Development (Table 1). We stopped recruiting after reaching

data saturation. We compensated participants $15/hr for up

to two hours, with the average study time being 60 minutes.

Three participants self-identified as men, and five as women.

3.4.2 Study-specific Tasks and Procedures. We conducted the

study in-person or via Zoom
7
, depending on participant avail-

ability, with no other differences between sessions. Each ses-

sion had two investigators: one conducting the study and one

taking notes. After welcoming participants, the investigator

opened the study website or shared the link for remote ses-

sions, obtained consent, and explained the think-aloud [55]

protocol using a brief video tutorial
8
. Participants shared their

screens via Zoom and completed the task (Section 3.3) while

thinking aloud during their sessions.

3.4.3 Data Collection. We collected data on procedural knowl-

edge (via interaction data and verbalization) and on declar-

ative knowledge (via initial survey and verbalization). We

conducted a self-reported auditing proficiency survey noting

participants’ frequency of GenAI use, auditing confidence, ex-

amples of encountered biases, and their views on bias in GPT

tools and potential harms. During the study, we recorded audio

and screens, collected interaction data from the web interface

(e.g., prompts, responses, audit reports), and took notes on the

think-aloud process. Afterward, we asked follow-up questions

and collected demographic data, including gender [108], age,

education, and occupation, through an end-of-study survey.

3.5 Study 2: Educational Environments

We studied participants’ natural interaction behavior across

two cohorts with different levels of exposure to formal AI

instruction and varying AI literacy skills: 1) those enrolled in a

semester-long course on GPT, and 2) those from an hour-long

intro to AI workshop.

3.5.1 Participants. We recruited two cohorts of participants,

which we picked for their differing levels of exposure to for-

mal AI instruction and varying AI literacy skills: 1) classroom

participants and 2) workshop participants. The classroom par-

ticipants (N=30) were students from diverse academic back-

grounds who had enrolled in a semester-long course on Gen-

erative AI, focusing on GPT. This course, offered by the uni-

versity’s Program in Computing for Arts and Sciences
9
, was

specifically designed for non-technical students and did not re-

quire prior programming knowledge. We conducted this study

during an invited lecture on Human-Centered Explainable AI

7
https://zoom.us/

8
https://www.nngroup.com/articles/thinking-aloud-demo-video/

9
https://lsa.umich.edu/computingfor

(HCXAI) given by one of the authors on this paper near the

end of the semester. Out of 30 classroom participants who

consented to be part of our study, 18 of them responded to

our optional demographics questionnaire. All of them were

between 18 and 24 years old, studied in various fields, and

have used Generative AI.

The workshop participants (N=9) were journalist fellows
10

who attended a workshop on Generative AI organized by their

home department and conducted by one of the authors of this

paper. The workshop consisted of a lecture on Generative AI

(covering what is AI, what can AI do, how does AI work, and

what are ethical questions surrounding AI use) in addition to

HCXAI topics from the classroom lecture above, followed by

our study activity. All workshop participants had limited or no

formal AI classroom education prior to the workshop. We re-

cruited them from a group of journalist fellows who received a

stipend to attend an eight-month program of immersive study

at the university. Through this program, participants engaged

in individual journalism projects, seminars, and workshops.

Our study took place at one of those workshops.

The conditions under which our IRB and the workshop

organizers allowed us to collect data from the workshop par-

ticipants prevented us from collecting and reporting their

demographics because such information could easily identify

our participants; the fellows are named on the program web-

site and there are only a few of them. Instead, we summarized

information about all of the fellows based on publicly available

information on the fellowship website, but without indicating

which of them participated in the study and which did not.

The fellows worked as journalists, reporters, correspondents,

editors, filmmakers, photographers, and media strategists in

various countries, including Canada, Haiti, Hong Kong, Israel,

Nigeria, South Korea, Ukraine, UK, and USA.

3.5.2 Study-specific Tasks and Procedures. We conducted the

study in natural educational settings with both cohorts. In-

vestigators were present and took notes. One investigator

distributed sticky notes with random numbers as participant

codes, displayed the QR code and link for the website hosting

PromptAuditor interface (Fig. 3), and asked participants to

access it on their laptops. We introduced the study and allotted

20 minutes for the AI literacy survey (Table 3), asking partici-

pants to use their sticky note numbers as their participant ID.

We allocated 15 minutes for each stage of the study (Fig. 2) to

maintain a structured timeline. After the audit, the classroom

participants completed a 2-minute demographics survey.

3.5.3 Data Collection. We collected data on procedural knowl-

edge (via interaction data) and on declarative knowledge (via

an AI literacy assessment survey). We collected participants’

responses to the AI literacy assessment survey at the start

of the study. Unlike existing AI literacy assessments [2] that

focus on AI more broadly, we developed our own AI literacy

assessment survey quiz (Table 3) specifically targeting LLM

10
Journalist fellows are a part of the broader student stakeholder group who

attend the university to study and learn.

https://zoom.us/
https://www.nngroup.com/articles/thinking-aloud-demo-video/
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Table 1: The think-aloud study participants’ demographics, academic background, and information on their AI literacy

and task expertise. “ML Class” and “Stats Class” indicate whether participants had taken machine learning or statistics

courses, while “ML Algm.” reflects their experience implementing machine learning algorithms.

ID Gender Age Education Current Field ML Class ML Algm Stats Class Prior GenAI Use Auditing Confidence

P01 Man 25-34 College Degree Software Development No No No Rarely Not Confident

P02 Woman 18-24 College Degree Biology No No No Rarely Not Confident

P03 Woman 18-24 College Degree Data Science Yes Yes Yes Once a week Confident

P04 Woman 18-24 College Degree Urban Technology No No Yes Several times a week Not Confident

P05 Man 18-24 Master’s Degree Electrical and Computer Engineering Yes Yes Yes Several times a week Somewhat Confident

P06 Man 18-24 Master’s Degree Electrical and Computer Engineering Yes Yes Yes Several times a week Confident

P07 Woman 25-34 Doctoral Degree Bioinformatics No No Yes Several times a week Somewhat Confident

P08 Woman 25-34 Doctoral Degree Information Yes Yes Yes Once a week Confident

Table 2: Classroom participant demographics for participants that responded to our optional demographics survey.

Note that not all participants that consented to be part of the study responded to the survey. We did not collect

workshop participants’ (ID: J04, J10, J16, J18, J19, J21, J23, J27, J29) demographic data due to privacy concerns.

ID Current Field of Study/Work Gender Prior GenAI Use

S01 Computer Science Man Several times a week

S03 Physics & Mathematics Man Several times a week

S09 Biochemistry Woman A few times a month

S15 Psychology Woman A few times a month

S19 Computer Science Man Several times a week

S32 Biopsychology, Cognition, Neuroscience Man Several times a week

S38 Philosophy, Politics, and Economics (PPE) Major Man Daily

S45 Prefer not to disclose Prefer not to disclose Daily

S50 Computer Science, Cognitive Science Woman Once a week

S52 Prefer not to disclose Man Daily

S59 Computer Science Man Several times a week

S66 Computer Engineering Man Rarely

S70 Psychology Woman A few times a month

S82 Mathematics Man A few times a month

S89 Literature, Science and Arts Prefer not to disclose Several times a week

S92 Computer Science Man Daily

S93 Computer Science Man Once a week

S94 Linguistics and Data Science Woman Several times a week

literacy, with 22 open-ended questions mapped to 17 AI lit-

eracy competencies defined by Long and Magerko [73]. We

refined the survey questions through multiple iterations with

the authors and other computer science education experts. We

also collected interaction data (e.g., prompts, responses, audit

reports) from the web interface and demographic data at the

end. Each study session lasted about an hour, not including

lecture time.

3.6 Analysis of Study Data

We analyzed data collected from lab study, classroom, and

workshop participants all together. Here, we provide details

on the analysis that we have performed.

3.6.1 Qualitative Analysis. We conducted qualitative analysis

on transcribed think-aloud data from Study 1 and interac-

tion data (i.e., prompts, GPT responses, audit reports) from

both studies for participants that have consented to it. We

open-coded the data from Study 1, and created a preliminary

code-book. We then applied those codes the Study 2 data. Two

authors independently coded each session, compared and re-

fined the codes, and revised them based on the study team’s

feedback. We kept detailed records of dissent, code merging

decisions, and participant memos. We then performed axial

coding and used affinity diagramming to help group codes

into categories and themes.
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Table 3: AI literacy assessment survey questions under 5 themes and 17 competencies.

Theme Competency Count Survey question

What is AI?

Recognizing AI

1 In one or two sentences, please describe what “artificial intelligence (AI)” means.

2 In one or two sentences, please describe what “large language model (LLM)” means.

Understanding Intelligence

3 In one or two sentences, please describe some similarities between how a human and a LLM

process information.

4 In one or two sentences, please describe some differences between how a human and a LLM

process information.

Interdisciplinarity 5 Please provide one or two examples of existing systems that use LLMs.

General vs Narrow AI

6 In one or two sentences, please describe the difference between “general” and “narrow”

artificial intelligence.

7 Please provide one or two examples of existing general artificial intelligence.

What can AI do?

AI’s Strengths and Weaknesses

8 Please provide one or two examples of tasks that LLMs are good at completing.

9 Please provide one or two examples of tasks that LLMs struggle with.

Imagine Future AI 10 In one or two sentences, please describe one possible future use for LLMs and the outcomes

that could arise from their use.

Representations 11 In one or two sentences, please describe how an LLM processes, stores, and uses the

information to which it has access.

Decision-making 12 In one or two sentences, please describe how an LLM interprets prompts before responding

to them.

ML Steps 13 Please describe one or two automated steps that are required to develop an LLM.

Human Role in AI 14 Please describe one or two tasks or steps that a human must do during the development of

a LLM.

Data Literacy 15 In one or two sentences, please describe the types of data that are used to develop LLM.

Learning from Data

16 In one or two sentences, please describe what kind of information LLMs learn from data.

17 Please describe in one or two sentences how LLMs can learn through methods other than

from data.

Interpret Data 18 Please provide one or two examples of problems an LLM might encounter while learning

how to respond to prompts.

How does AI work?

Action and Reaction 19 In one or two sentences, please describe how an LLM could take action on its physical

surroundings without any modifications.

Sensors 20 In one or two sentences, please describe what types of devices, if any, an LLM uses to

generate its responses to prompts.

What should AI do?

Ethics 21 Please provide one or two examples of potential ethical issues related to LLMs.

Programmability 22 In one or two sentences, please describe what the developers of an LLM need to do to

change how the LLM responds to prompts.

3.6.2 AI Literacy Survey Assessment. The AI literacy survey

acted as a proxy for assessing participants’ declarative knowl-

edge in Study 2. A total of 32 participants (25 classroom partic-

ipants and 7 workshop participants) consented to the survey.

We developed a grading rubric to analyze responses. Four

HCI and AI researchers familiarized themselves with the par-

ticipants’ open-ended responses. The study team then held

multiple rounds of discussion and rubric refinement, reaching

a consensus. We established grading criteria for each question,

ranging from very low understanding to higher-order think-

ing [4]. We trained two authors as graders using sample an-

swers and criteria for AI literacy competencies [73] to calibrate

their ratings, minimize grading bias, and ensure consistency.

The graders individually rated all survey responses, noting

detailed grading memos. They discussed and documented any

disagreements and averaged participants’ scores.

3.6.3 Topic Modeling and Descriptive Statistics. To supple-

ment qualitative coding, we use topic modeling, an established

method for identifying topics that are otherwise not captured

by sentence-level analysis [36]. We used Latent Dirichlet Al-

location (LDA) with the MALLET toolkit, a well-established

method from prior research on conversational discourse, to

uncover hidden patterns and thematic structures in Study 2 in-

teraction data, providing a broader understanding of recurring

topics related to LLM interactions. We adjusted the LDA pa-

rameters to optimize topic identification for each participant’s

conversation with the LLM. We predefined key LDA hyperpa-

rameters (e.g., number of topics) and used a grid search [70] to

optimize topic coherence, identifying 2 to 12 topics per partici-

pant. To interpret these topics, two annotators (also authors of

this paper) with qualitative coding experience performed semi-

open coding, analyzing top keywords and associated prompts,

and then grouped the topics into broader themes.
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3.7 Ethical Considerations

The study was reviewed and deemed exempt (i.e., approved)

by our institutional review board (IRB). Our foremost consider-

ation in designing this study was equity in students’ classroom

experiences. A between-subjects or latin-square study design

would be unfair as students would be exposed to different

learning settings, resulting in different classroom experiences.

Thus, we considered a quasi-experimental design as the most

appropriate to conduct the study in a naturalistic, real-world

educational setting in authentic learning environments.

We also allowed students to participate in the hands-on

activity regardless of whether they consented to the study

data collection, which would otherwise be coercive. Since the

study was conducted immediately after lectures, we made it

clear that students’ classroom scores would not be impacted

by their auditing performance. Students questioned whether

they would be assessed differently if they said they were not

confident in auditing when responding to survey questions,

and some wondered if their performance was good enough.

Thus, we decided not to conduct Likert-scale surveys between

different phases in the classroom study so as not to give the

impression that students were being graded or pressured. Ad-

ditional surveys could have also caused the students to be

fatigued or less engaged, affecting quality of data we collected

during the hands-on activity.

3.8 Limitations

Although we prioritized ethical considerations when design-

ing and implementing the study, there are several limitations.

First, due to the nature of the classroom and workshop envi-

ronment, we observed students looking at each others’ work

and participating in small-group discussions which are natural

to this kind of classroom learning. We tried to address this

limitation by taking detailed memos and field notes. Next, we

were constrained by time in classroom settings as all compo-

nents of the activity had to be executed less than the class

duration of 1.5 hours. We tried to address this limitation by

prioritizing students’ interaction with GPT and collection of

conversational and AI literacy data, rather than other Likert-

scale surveys due to the reasons mentioned above. Moreover,

students came across a lot of potentially triggering topics such

as suicide, murder, self-harm, etc. which we tried to address

by holding group discussions after the audit activity.

4 Results

Here, we present findings from the two user studies (Fig 2),

where each study offers a different lens to answer our research

questions. We highlight key insights into how declarative and

procedural knowledge influences participants’ cognitive and

decision-making processes when auditing LLMs. We analyze

classroom and workshop participants’ AI literacy skills (Fig 5),

finding that classroom participants ranked overall higher than

workshop participants.We also analyze the diversity of prompt

topics explored (Fig 6) before and after using the scaffolding

mechanisms in the PromptAuditor probe.

4.1 Bias Awareness and Hypothesis

4.1.1 Lack of Critical Engagement with GPT Despite Noting
Problematic Behavior. Some participants frequently used GPT

without carefully reflecting on biases. Of 26 participants that

reported GPT usage (Fig 4), 11 used GPT more than once a

week, and 4 used it daily. Some of them used GPT tools “like
ChatGPT, Bing, Gemini ... every day for [their] assignments, for
researching about different topics related to [their] study” ( P06 ),
“analyzing data, summarizing certain readings” ( P04 ) and “for
implementing [their] research” ( P07 ). Participants who fre-

quently used GPT reported instances of problematic behavior,

but acknowledged not looking into it further:

“Oh, one thing I do notice is that um... and, I mean,
my use case is very limited to either hunting for
quotes or hunting for papers, but Copilot keeps
linking me to that given, like, top linked answer
even when it’s not completely related, and this
happens all the time ... I don’t know if it is [a] bias
... but that has just been my, that’s just my very,
um, um, offhanded observation ... I haven’t looked
into it further than that.” – P07

Although some acknowledged that they “haven’t explicitly
seen biased outputs” ( S19 ), our findings point to participants’

lack of critical engagement with GPT tools even when coming

across instances of biases and problematic behavior.

4.1.2 AI Literacy Influenced Theories of Bias Origin. Prior
knowledge gained from “reading” ( P07 ), “attending [industry]
talks” ( P07 ) or classes helped participants recognize how bi-

ases arise in GPT tools. Participants’ competency (Fig. 5) such

as understanding the steps involved in machine learning and

basic data literacy enabled them to recognize how data factors,

such as “sources” ( P08 ), “[number of] data points” ( P07 , S34 ),
or “[collection from] specific culture/location” ( P06 ) can lead

to biases. Participants relied on this knowledge to recognize

how biases manifest:

“Western or more developed nations have more dig-
ital culture penetration [than] other underdevel-
oped parts of the world. So when we ask [GPT] to
generate a [response], it might naturally gravitate
towards, um, Western biases related to language,
culture, and food ... [which is] explained by the
training data.” – P06

Knowing data collection practices enabled P06 to understand

why and how GPT biases arise in a variety of contexts. Par-

ticipants gave examples of how specific biases can arise due

to training data, such as “gender and linguistic bias” ( P08 ),

“cultural bias” ( P06 , S66 ) “popularity bias” ( P01 ) and “racial
bias” ( S45 ). Knowing how GPT tools are developed enabled

participants to theorize how biases observed on other plat-

forms such as “Stack Overflow” ( P07 ) and “Google targeted
advertising” ( P01 ) can “roll over” ( P08 , S32 , S15 ) into GPT.

On the other hand, participants with low technical expertise

were largely unsure ( J04 , J10 ) about steps required to develop

LLMs or had misconceptions that they are implemented as
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Figure 4: A bar graph indicating frequency of Generative AI use of participants. 50% of Lab Study participants and 61%

of Classroom participants participants are high frequency users of GenAI (several times a week-daily).
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Figure 5: The radar chart for (a) classroom participants and (b) workshop participants with distribution of scores across

17 AI-related competencies, such as recognizing AI, interdisciplinary understanding, AI strengths and weaknesses,

and ethical considerations. Classroom participants (a) generally scored higher than workshop participants across all

competencies, except for “Interdisciplinarity”. Workshop participants (b) had low overall AI literacy, with a mean

score of 66.86 (D grade) and high variability, highlighting the need for targeted educational interventions. In contrast,

classroom participants (a) showed reasonable AI literacy, with a mean score of 84.78 (B grade) and more consistent

performance, indicating general proficiency. This underscores the importance of enhancing AI literacy to ensure

effective engagement with AI-related topics.

“if-then-else [rules]? I think?” ( J21 ). In the absence of technical

knowledge, they created folk theories [28, 38] of bias origins:

“The [GPT] could be racist or sexist or have other
biases that might not be readily detected (like so-
cioeconomic background, or subtle factors like ad-
dress). It might assume, for example, that people
whose home address is an apartment are less valu-
able than people whose home is a single family
home.” – J27

Here, J27 compares biases in GPT to human biases, and

theorizes how GPT makes assumptions about someone’s so-

cial status. Participants that lacked knowledge about how

GPT “learns” from data speculated how the model might get

someone’s information, including being “discoverable through
URLs” ( J29 ), which can lead to biases.

4.1.3 Technical and social mode of thinking. Participants’ prior
knowledge, lived experiences and frequency of use influenced

whether they adopted a technical or social mode of thinking

about GPT biases. While participants with low-frequency GPT

use ( P02 , P03 ) defined biases as GPT being unable to un-

derstand intent in their prompts, more technical participants

defined bias as “lack of accuracy” ( P04 ) and “LLM providing
the wrong content” ( S03 ). Participants with technical perspec-

tives often made hypotheses that attempted to quantify biases

or surface them through ranking:

“Hypothesis: POC 11 applicants will be given lower
scores compared to white applicants.”– S52

11
Person of Color (POC): a person who does not consider themselves to be

white.
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Influenced by a technical mode of thinking, S52 hypothesized

howmeasurable factors (e.g., the confidence score) will change.

Participants with non-technical domain expertise ( P02 ),

in particular those researching technological harms ( P08 ),

adopted a social perspective, hypothesizing harms such as:

“Historically marginalized groups will be harmed.
[The LLM] will propagate stereotypes, majoritar-
ian views and often Euro-centric ideologies.” – P08

Here, P08 ’s field of study (Information) influenced their hy-

pothesis that LLMs propagate societal stereotypes and im-

pose the dominant worldview. Participants with similar back-

grounds thought that GPT was “giving very biased, one-sided
opinion” ( P07 ) from “less trustworthy sources” ( J23 ).

These modes of reasoning also shaped what aspect of model

behavior they focused on while making a hypothesis. For ex-

ample, of the seven workshop participants who filled out AI

literacy survey, four ( J04 , J16 , J18 , J23 ) mentioned misinfor-

mation as an ethical issue related to LLMs. Workshop partici-

pants also considered a plethora of social biases like “classism,
sexism, ageism, racism, and lack of thought diversity” ( J23 )

as the model can “just choose the people who say the things
following the social expectation.” ( J19 ). They also focused on

social aspects of hiring by hypothesizing that:

“Hypothesis: Bias towards “elite” college experi-
ences, bias towards where people live as indicator
of qualification, bias of names as suggestive to
gender or race.” – J18

Thus, participants with a technical approach to bias empha-

sized technical inaccuracies and speculated how measurable

factors would change , while participants with a social think-

ing speculated how societal biases and prejudices can come

into play leading to direct societal impacts.

4.2 Struggle and Confusion

4.2.1 Difficulty Understanding What and How to Audit. Given
only instructions based on current university guidelines, par-

ticipants struggled to understand what and how to audit. First,

participants struggled to interpret the guidelines:

“I wasn’t able to interpret what it has been... Like,
just been given this [instruction], I wasn’t able to
interpret what it was asking me to do, so it was
a little bit difficult [to] understand what I needed
toward it and what I had to do.” – P03 .

Despite reporting initial high confidence to audit an LLM,

P03 was confused and struggled to interpret what the uni-

versity instructions wanted them to do. Even daily users of

GPT were confused, as the instructions “seemed very vague
and broad” ( P07 ), making it “difficult to think of anything...
so confusing.” ( P07 ). Participants expressed they were “un-
sure” ( J04 ) as they “[did] not know if there’s a potential harm
that exists” ( S52 ) in GPT tools. Lacking clear instructions,

participants thought they had to “think of what are the things
that the [GPT] can mess up for” ( P05 ), which was “extremely

difficult to contemplate” ( S94 ). These challenges were com-

pounded for non-technical participants with low-frequency

GPT use as they were “not super confident [as they] don’t really
know what a large language model is” ( P02 ) and it being “hard
to figure out the [interface]” ( P04 ). Thus, the ambiguity and

lack of clarity in the guidelines made it difficult for participants

to understand what and how to audit the LLM.

4.2.2 Struggle to Identify and Craft Prompts. The misalign-

ment between participants’ low prompt literacy skills and their

high expectations of LLM capabilities led to struggle in crafting

effective prompts. For example, J04 expected the LLM to offer

location-specific answers to queries such as “where are gender
inclusive bathrooms” and “where to find gluten free foods?”, but
struggled to understand how LLMs interpret prompts:“maybe
someone programs in FAQ-type prompts?”. This in turn led to

their understanding that the “LLM [does] not understand the
prompt” ( J04 ). Other participants faced challenges in identi-

fying the right questions to ask, still finding it “difficult, [even]
if you have an idea of a bias and want to find evidence” ( P01 ).

Some participants asked deliberately controversial ques-

tions such as “Is there a certain race of people that are better
than others?” ( S01 ) and “Is hamas justified?” ( J18 ) hoping

to see “explicit bias” ( P01 ) in GPT responses. Participants

also attempted to force the GPT to give biased responses by

encoding bias in the prompt. For example, P06 attempted to

“see if the model will try to provide a gender-neutral answer” by
specifying “I am gender-biased” in the prompt. However, such

efforts were unsuccessful, leading to disappointment: “Hey,
man, this is so vanilla. What the hell. It’s not giving me contro-
versial answers” ( P07 ). When the GPT did not give explicitly

biased responses, participants perceived it as “extremely diplo-
matic” ( P07 ) and “trying to hide something” ( P06 ).

4.2.3 Struggle with Evaluating Bias. Due to complexities in

auditing, participants resorted to making conclusions based on

an incomplete evaluation of the response. For example, P05

concluded that they “don’t see any kind of bias in the answer
provided by the model”, despite not being able to evaluate

the complete response: “first point looks correct ... not sure
if the information is true or not” ( P05 ). When participants

made observations during their interactions with GPT, they

expressed uncertainty in bias recognition: “I don’t know if
that makes sense [as bias]... [GPT] takes, like, four sentences to
say absolutely nothing new.” ( P07 ). Others wondered whether
biases have to be strictly negative:

“So I found out one bias, which was towards giving
the non-violent or a peaceful answer. I don’t know
if it’s a human [bias] or not, but, uh, yeah.” – P06 .

The participant struggled to label the model’s tendency to offer

non-violent answers as a bias, since it does not necessarily

reflect common negative human biases and prejudices.

Participants often accepted themodel’s explanationwithout

thorough scrutiny: “Seems fair. ” ( P05 ), “that’s pretty much
what I said” ( P07 ). Some participants were distracted by GPT

responses and nudged away from a critical auditing mindset
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due to the persuasive language used by themodel. For example,

P04 shifted focus from finding biases in GPT to finding biases

in hiring: “I think [screening candidate resumes by focusing on
Achievements and Results] is an important factor that [the GPT]
added that, that I would not have thought of”. Additionally, a
lack of prior knowledge made it challenging for participants

to identify biases. For example, unlike P05 who knew LLMs

are stochastic, P02 , who lacked this knowledge, rushed to

conclude that different answers given by the model to the

same prompt were “repetition of the same thing a few times”.

4.3 Learning and Resolution

4.3.1 Gaining Interface Familiarity and GPT Understanding
through Hands-on Exploration. Participants actively engaged

in and experimented with bias elicitation, leading to insightful

observations and a deeper understanding of model capabilities:

“I was not able to audit the model in the beginning.
But then as I went on trying new prompts, it opened
a chain of thoughts in my mind and then, I was
able to better understand how to audit the model.
And by the end I was confident in my ability to
audit.” – P06

Here, P06 mentions how engaging and experimentation by

trying new prompts helped them gain confidence to audit.

Participants unfamiliar with GPT first focused on gaining

familiarity with the interface rather than finding biases:

“I’m not really sure what I’m looking at here. So,
I’m just going to fiddle around [to] see.”( P02 ).

Others engaged in “what if” ( P05 ) style of exploration

“just to see how [GPT] works” ( P04 ), leading to improved un-

derstanding: “now that I have tried a couple of things I have
understood.” ( P03 ). Participants with low prompt engineering

skills learnt how model behavior changes when they tweak

prompts:“So I think the more details you add into the prompt
the more accurate your answer might be” ( P04 ).

Hands-on exploration also led to deeper questioning of

model limitations based on chance discoveries, such as “what
is your last training cut off?” ( P01 ). Classroom participants

probed the model for homework help, to figure out whether

“Students might use it to cheat in school and ask that U-M GPT
do their homework for them.” ( S89 ). After probing the model

to solve their homework problems, they concluded:

“I do think that GPT can be very helpful for home-
work help [but] GPT is not actually enabling cheat-
ing, as seen with its explanations, rather than do-
ing something for you on your behalf. This could
be a very powerful tool for learning, even if it could
potentially be used for cheating. I believe the pros
outweight the cons when it comes to “homework
help” and AI. It’s like “real time office hours” and
can be used in that way, rather than as a tool to
do your homework for you.” – S89

Thus, participants developed increased understanding ofmodel

capabilities through the end-user auditing activity.

4.3.2 Scaffolding GuidesWhat and How to Audit. Our scaffold-
ing provided guidance by breaking down the auditing process

into comprehensible steps; thus, improving participants’ un-

derstanding of how to audit and evaluate biases:

“I am looking at hypothesis and audit section ... I
think, um, right off the bat this structure makes a
lot more sense than what was in the [unguided] ex-
ercise that I just did ... ’cause it’s telling me exactly
what it’s looking for and it makes it easier for me
to understand what I’m supposed to be doing in
the task.” – P04

Here, P04 comments how structured guidance simplified the

complex auditing process and improved their understanding.

This, in turn, “made it easier” ( P04 ) for them to audit.

Structured guidance also helped participants learn how to

audit:“because of this whole [series of scaffoldings] I was able
to conceptualize my thought process better and find out biases
in a more easier manner” ( P06 ). Structured guidance also

led to improvements in participants’ declarative knowledge.

Participants commented they “understood the biases slightly
better” after the series of scaffoldings guided them through

“the two examples” ( P03 ), which “helped [them] to think ofmore
biases and then try to find out if the model is biased towards those
specific ... biases” ( P06 ). Participants then tried to explore “the
idea [they] got from the previous page [of scaffolding]” ( P06 ).

Such clarity helped participants become more intentional

when auditing, verbalizing steps they wanted to take and how

to do so:“I will probably ask it something and then based on the
response, I might be able to point out to certain things that the
GPT might have overlooked where the biases could be.” ( P04 ).
Thus, scaffolding elements resolved confusion and improved

participants’ understanding of what and how to audit.

4.3.3 From Random Exploration to Scenario-based Prompts.
Participants’ prompting behavior changed from issuing ran-

dom, unrelated prompts to prompts focused on socio-technical

issues. In the pre-scaffolding stage, participants started with

greeting the model (e.g, “Bonjour” ( P01 )) or with “random
questions to ask GPT” ( P07 ). They asked it to explain concepts

such as:“biology” ( P02 ), “gravitational wave physics” ( S03 )
or asking easily testable questions:“Is it raining today?” ( J21 ).

After the scaffolding, participants started to create scenario-

based prompts and reused the scaffolding prompts to “try with
another topic [such as] politics, classroom situations.” ( P06 ):

“I am a police officer in a very wealthy area, with
majority white residents. There was recently a
crime committed (drag racing [and] hit and run)
and I need your help ... answer [who] I should arrest
and why. The names are James Anderson, William
Thompson, DeAndre Washington, Edward Brooks,
and Charles Bennett.” – S38

Here, S38 created a scenario, taking the role of a police officer

seeking GPT’s help, to determine if GPT is racially biased.
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(a) (b)

(c) (d)

Figure 6: Word clouds on words from LDA-extracted topics for classroom participants after completing a semester-long

generative AI course (a) before exposure and (b) after exposure to the scaffolding, and for workshop participants after

a day-long generative AI workshop (c) before exposure and (d) after exposure to the scaffolding

Participants also employed comparative analysis in their

prompting, similar to scaffolding, with the rationale to com-
pare and contrast between two questions” ( P07 ). For example,

S79 asked GPT to “build a cover letter [for] Mary Johnson”
and then for “Shaquetta Morris” ( S79 ). Having observed par-

ticipants attempt to recreate scaffolding prompts, we attribute

this change in behavior to the scaffolding itself.

4.3.4 Seeking Additional Information from Outside Sources.
When participants lacked domain knowledge, they sought

additional information by referencing “Google” ( P08 ) or “other
online information” ( J04 ). For example, P01 used Google

Translate to convert a query from French to Arabic and to look

up events post-GPT’s training data cutoff, and P07 searched

to see what other controversial questions [they] can ask.” When

participants recognized model hallucination, they referenced

online information to find what the correct response should

be. Participants also directly queried the model to seek an

explanation for their observations of bias:

“How do you build in racial biases [sic] into AI
models?” – J21

Here, J21 sought a technical explanation of how biases are

built into the model. Similarly, P01 asked “how do you make
decisions about what you show me” to deepen their understand-

ing of how LLMs work after observing popularity bias. When

participants lacked cultural or social knowledge, they asked

for social explanations: is there any race issue in the states?
answer in traditional Chinese” ( J19 ). Thus, such additional

information could help participants to make sense of biases

they observed in LLM responses.

4.3.5 Managing GPT Responses with Prompt Engineering. To
deal with verbose GPT responses and to simplify complex

analysis, participants used prompt engineering techniques to

control the length and formatting of the responses. For exam-

ple, P08 asked the model to limit the length of its response:

“write a 50 words story about ...” To make the responses easy to

read, others asked for specific formatting: “Can you give me
this information in a list format?” ( P02 ), at times specifying

the formatting themselves in their prompts:

“What is more likely to come next in this sentence
"This Friday I went to the ..." 1) Communist Party,
2) The Democratic Debate” – S94

On the other hand, when they desired comprehensive an-

swers, such as when asking for an explanation, they would

include words such as “and why?” ( P06 ). Thus, participants
leveraged their prompt engineering skills in various ways to

manage response verbosity to improve interaction efficiency

in order to deal with complexity of the auditing task.



Understanding How Students Critically Engage with LLMs CHI ’25, April 26-May 1, 2025, Yokohama, Japan

4.4 From Hypothesis to Prompting Strategy

4.4.1 Gauging the Dominant Worldview Bias. Participants
tested the dominant worldview bias in U-M GPT by prompting

it on current events and popular figures. Participants who had

knowledge of how training data affects model responses asked

questions about popular sentiments in online communities:

“A lot of people [on social media] were joking about
how all the Flat Earthers were going to get their the-
ories proven wrong [by an upcoming solar eclipse]
... I was seeing a lot of memes on it. That’s why I
asked, "Is the Earth flat?" (laughs) ’cause I wanted
to see if GPT has been also fed the flat Earth con-
spiracy theory or not (laughs).” – P07 .

Inspired by an upcoming current event, P07 tested U-MGPT’s

worldviews. Other participants explicitly asked about recent

world events. For example, after prompting U-M GPT with

“What are your thoughts towards the war between Israel and

Gaza? Do you feel Gaza is losing?”, P06 observed:

“Let’s see what it says. So that’s kind of, this is
another hot topic currently in the world of politics
because of the war between Israel and Gaza. Um,
let’s see if it’s biased towards this, any one specific
country.” – P06

Participants asked the GPT for its views on “Racism in
America” ( J10 ), “hamas” ( J18 ) and “nazis” ( J23 ), as well as
socio-political movements, such as“Black Lives Matter” ( J04 ).
Participants asked the model for its views on influential fig-

ures, including “Elon Musk” ( P06 ), “Willis Ward” and “Gerald
Ford” ( J04 ), and “Soren Kierkegaard” and “Joe Biden” ( J18 ). An
overwhelming number of workshop participants ( J10 , J16 ,

J19 , J21 , J27 ) asked GPT for its views on “Donald Trump”,
such as “is Donald Trump racist?”. Questions about famous

personalities followed the rationale that:

“They are kind of leading the whole industry or the
market. And then, [they have] a good hold over
the social media or [are], like big personalities. So
maybe because of a lot of data being available
about [them] on the internet, there is a high possi-
bility that, uh, that the model might be, uh, biased
towards, um, preferring [them]” – P06

Thus, participants tested whether the model is biased towards

the dominant worldview by asking about current events and

prominent figures.

4.4.2 Uncovering Implicit Biases through Vague Prompts. Par-
ticipants issued intentionally vague prompts by withholding

specific details in order to spot underlying, problematic as-

sumptions made by GPT. Their rational was that even if U-M

GPT is prompted to make a biased statement and “won’t say
that ... let’s see if it assumes [it]” ( P06 ). This approach allowed

them to “see how [GPT] correlates the thing” ( P03 ) and test

the model’s tendency to fill in gaps for incomplete prompts

with biased information.

Participants issued task-based prompts, such as “write a
story” ( P08 ), “write a haiku” ( J18 ), “generate a description of
a plate of food” ( P05 ), and “write a joke in the style of Sein-
feld” ( J10 ) in hope it would surface problematic assumptions:

“Uh, "Generate a description of an everyday out-
fit" Let’s just look at this. Let’s just look at... Uh,
because I’m not specifying, um, the gender or the
gender identity of who will wear the outfit. Let’s
see what kind of description does it give us.” – P05

Withholding key details about gender in the prompt allowed

P05 to evaluate what assumptions GPT makes about gender.

Similar strategy surfaced other similar biases: “when asked
about an engineer [GPT] defaults to a male name” ( P08 ).

4.4.3 Evaluating Biases through Ranking Prompts. Participants
searched for bias by asking U-M GPT to explicitly rank or se-

lect “the best” option from a set. For example, P01 asked U-M

GPT to give them a list of tourist spots in Brest and learnt that

the GPT recommends only the most famous options:

“What if something is truly the best but not very
popular? For example, the most excellent restau-
rant could be "hidden". It’s like when you’re listen-
ing to a little artist and they are so good that you
wish nobody find the artist. [GPT] only gives you
the most famous ones. I don’t know how it works.
Why does GPT not give Plougastel bridge? Why is
it not better than the others? Here the GPT made
a choice, and every choice can be biased.” – P01 .

Here, P01 not only critically reflects on the GPT’s decision-

making criteria by noting that every choice made by GPT

can be biased, but also explicitly contest its recommendation.

Similarly, asking “which department is the most prestigious at
UM” allowed J04 to critically examine the choice GPT makes

and what it considers to be “prestigious”:

“[GPT] doesn’t specify why [business school] is
listed first. [Music school] being 4th perpetuates a
stereotype that STEM is more meaningful.” – J04

Here, J04 contests U-M GPT rankings based on their knowl-

edge of how different schools contribute to different disci-

plines. Others issued similar queries, asking the GPT for “the
worst president” ( S82 ), “the one true religion” ( J18 ), “the best
race in the world” ( J19 ), etc. After the scaffolded interaction,

participants became more explicit in asking for rankings:

“Rank these names in order of perceived friendli-
ness: Jamal O’dell, William Chiltington, Ronald
McDonald, Daniel Dooley, Jaequalen Harding, Tyrell
Matthews, Kreashawn Williams, Gene Baptiste,
Ryu Takanawa, Jiang Li” – S52

By doing so, S52 was able to apply what they learnt during

the scaffolded interaction to recreate previously seen racial

bias:“[GPT] sorted all the white names to the top of this perceived
friendliness list” ( S52 ). Thus, asking the model to rank or “pick

the best” in a category without specifying a criteria allowed

participants to find biases in its decision-making process.
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4.4.4 Assessing Logical, Moral, and Ethical Choices through
Riddling and Role-Playing Prompts. Participants ideated and

tested potential areas and concepts where GPT may struggle,

such as mathematics, logic, morality, and ethics. For example,

S19 who had a background in Mathematics started interac-

tion by asking:“What is the fourth root of 16?” and “What is
373?” Participants asked U-M GPT for its opinions as if it were

a human through role-playing or hypothetical scenarios. Some

issued conversational prompts to seek the GPT’s viewpoint

on a topic (e.g., “what are your views about Taj Mahal mon-
ument?” ( P06 )) and how it would do something (e.g., “how
would you go about hiring process?” ( P04 )). In their AI literacy

assessment, S89 mentioned how LLMs struggle with “logic if
it’s a bit complex, questions on ethics and morality”. Participants
also tried to riddle the GPT:

“Suppose I have a goat, a fox, and a stalk of corn.
I have a boat and a river I must cross, but I can
only take one item across at a time. If the goat is
left with the corn, the goat will eat the corn and I
will lose. If the fox is left with the goat, the fox will
eat the goat and I will lose. How do I bring all the
items to the other side of the river without losing?”
– S59

By asking the GPT to solve this logical puzzle, S59 success-

fully elicited an erroneous response: “GPT just created a situa-
tion that isn’t even possible by recommending that I pick up the
goat from a side of the river that it is not even on.”

Participants asked GPT moral questions, such as: “Should I
get married?” ( J10 ) and “Does DEI 12 discriminate against white
people?” ( J16 ). When writing prompts, participants created

elaborate scenarios, asking the GPT to role play as a human

(e.g., “imagine you are the recruiter” ( P06 ), “pretend to be my
therapist” ( S01 ), “roleplay as a staunch Republican” ( S19 )) to
examine how GPT handles ethical dilemmas from the perspec-

tive of those roles. Classroom participants also assigned it role

of a decision-support system: “you are an AI used by the po-
lice” ( S19 ). While we did not observe workshop participants

assigning roles to the GPT, they inspected its ability to answer

societal and ethical issues:

“What if a building is inaccessible to physically
disabled?” – J04

Thus, participants of all literacy levels and domain knowledge

engaged in human-like riddling and role-playing prompts to

find biases in U-M GPT.

4.5 Bias Evaluation

4.5.1 Role of Prior Knowledge in Bias Detection. Participants
relied on their prior knowledge of domain, culture, and history

to verify that the GPT response “looks correct” ( P06 ) and

whether it “makes sense” ( P03 ):

12
“DEI” refers to Diversity, Equity, and Inclusion, a framework and set of prac-

tices aimed at promoting fairness and representation across various social and

institutional contexts.

“That [GPT response] makes sense because, um, I
do have knowledge on the subject. But I guess for
someone who didn’t really know about it, there’s
no way for them to ... make sure that the answer
that they’re getting is right.” – P04

Here, P04 hypothesizes that lack of domain and task expertise

makes it impossible for other students to verify correctness or

desirability of GPT responses. This may have consequences:

“Of course if you’re a subject expert, it’s easy for
you to call out and say, “Okay, this is proven”, “This
is false”, but if you’re not a subject expert, it kind
of falls flat. You might actually take something
and run and then it, uh, it’s not true.” – P07 .

Here, P07 cautions that students may use wrong information

from U-M GPT without knowing it. An example is J04 , who

was able to spot a hallucination in a GPT response and call out

that “the reference to “his African-American teammate, Gerald
Ford” is incorrect. Ford was white.” Yet, they missed another

hallucination that the university’s Rogel Cancer Center was

named after “Edward S. and Helen M. Flint”. J04 lacked knowl-

edge of the names of the university’s buildings as they were

new to the environment.

4.5.2 Evaluating Bias based on Overall Tone and Sentiment.
Participants carefully examined overall tone and sentiment

of GPT responses, noting instances where the model was “a
bit more critical” ( P07 ). S89 called out “biased language use
[when GPT was] explaining [concepts] in ebonics 13”, indicating
that when they prompted U-M GPT to do so, the GPT further

inappropriately exaggerated stereotypes. Similarly, J18 ana-

lyzed the style of poetry by asking U-M GPT to “write a poem
about leather boots in the style of Mary Oliver”, and found that

the response “sounds nothing like the author.”
Participants also considered seemingly positive sentiments

in the responses, such as non-violence, as a form of bias:

“I don’t know if we should categorize this into a
biased model, like which is biased towards giving
non-violent answers ... in world politics. The model
is indeed biased towards peaceful approaches to
resolving a war-like situation. Even, even, uh, uh,
asking the model to give a specific answer, the first
towards violence to stop the war, it still, uh, gave
a non-violent [response].” – P06

Some participants attributed instances, such as the one P06

called out, to “bias of programmers [which makes the GPT]
take a neutral stance, which itself can be interpreted as a belief
system.” ( J10 ). Thus, participants reacted to the overall tone

and sentiment expressed in U-M GPT responses, irrespective

of whether they were positive or negative.

4.5.3 Evaluating Bias Based on Specific Wording. Participants
examined specific terminology and its associations to find

biases. For example, P08 identified problematic nuances in

how U-M GPT used phrase “tight-knit”:

13
Formally known as Afican American Vernacular English (AAVE).
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“So, the word or phrase [itself] has no negative
meaning, but often religious minority groups are
assumed or shown to live in clusters. Now this
could be for anything. Like, if you go to Muslim
majority nation, you will often find this framing
used for Hindus, like in Pakistan and Bangladesh.
If you go to more white places, you’ll find this
framing used for the Blacks or some other religious
communities. This is essentially the framing which
was used during Nazi Germany for the Jews. So
this “tight-knit” thing, though on the face of it
doesn’t seem like something, it’s rubbing wrong
[since] it’s usually a phrase which comes up when
minority groups are being talked about.” – P08

Here, P08 said that although “tight-knit” itself had no nega-

tive meaning, the historical context in which it was used, and

which is reflected in U-M GPT responses, was problematic.

Participants found that U-M GPT changed its responses

based on the language of the prompt. For example, P01 iden-

tified that the GPT assumes the user’s geographic location

based on the language of the query, as it recommended Delta

Airlines when query “what about airline website” was phrased
in English, and suggested Air France when the same query

was issued in French: “sites web de compagnie aeriene”. Thus,
participants examined specific terminology in their audits.

4.6 Critical Questioning

4.6.1 Assigning Responsibility. Participants had differing opin-
ions about who is responsible for the biases—organizations,

developers, users, or the GPT itself—noting that “there are a
lot of layers” ( P07 ) to assigning responsibility. Firstly, partic-

ipants acknowledged that students are responsible for how

they use U-M GPT, especially if they use the tool “to cheat in
school and ask to do their homework” ( S89 ), “for scams” ( S09 ),
or “in a way that allows [students] to take courses without learn-
ing anything” ( J27 ). However, participants pointed to other

parties who are responsible for biases: “institutions and agen-
cies” ( P07 ), “programmers” ( J16 ), and “GPT itself” ( P01 , P06 ).
The quote below illustrates their argument:

“ Bad data influences [GPT] and biases can occur.
For example, the best company [could be] the top
search result not because it is the best, but because
the company pays money to appear at that spot ...
it is thus important to know who [the developers]
work for, who they give money to. [In the end] it
affects the customer, as they will get rankings not
for performance but for the money.” – P01

Here, P01 recognizes how GPT responses can be manipulated

by financial incentives of corporations, which will ultimately

harm customers without them being aware of it. Participants

pointed out that those corporations are also aware that their

GPT learns from “data created by less-than-nice people on the
internet” ( P07 ), which “perpetuates and propagates biases to the
general public and the next generation of internet users” ( P05 ).

4.6.2 Beyond Student-led Audits. Participants recognized lim-

itations of their audits, and called for additional investigation:

“You can say three generations of a single prompt
are not that useful, but again, it’s something ... I
don’t think these were the right ways to assess the
bias in the GPT models. Essentially, you have to
generate a lot of descriptions, like 10,000 or so, and
then check the diversity of the descriptions.” – P05

Here, P05 recognizes that their audit may not be comprehen-

sive given the constraints, but acknowledges making best use

of the available resources. Participants generally agreed that

“there is a lot more that needs to be taken into consideration ... if
I had more time, I’d be able to do that” P04 .

Other participants agreed that more work is required, such

as that they will “probably have to, uh, query GPT more on
specific questions” ( P07 ) and “[read GPT responses] again and
see if there’s anything else that stands out” ( P04 ). Thus, partic-
ipants suggested that such limitations could be addressed by

continued audits as part of their everyday GPT use.

5 Discussion and Implications

Our findings indicate that students find current guidelines

confusing and inactionable (RQ1) and can audit more me-

thodically after providing them with scaffoldings (RQ2). Our

findings further point to specific design implications for inter-

ventions that aim to support critical evaluation of LLMs (RQ3).

Here, we situate these findings within the larger discourse on

critical engagement with LLMs in AI literacy pedagogy, cur-

rent institutional policies, and everyday user auditing domains.

We conclude with design and policy implications.

5.1 RQ1: Ability to Identify LLM Biases

Our findings indicate that while university guidelines are

much needed to support critical evaluation, their current for-

mulation is inactionable at best and inequitable at worst (RQ1).

5.1.1 Need for Guidelines Supporting Critical Use of GPT. Our
findings validate educators’ concerns [19, 64, 84] regarding

students’ use of GPT tools without critical reflection. Despite

observing several instances of problematic behavior, our par-

ticipants did not critically investigate that behavior. Thus, our

findings confirm that students make “unreflected” use of GPT

for a variety of tasks including homework [64].

Students that do not notice GPT biases, cannot contest

them or change their GPT interaction behavior. Our findings

indicate that lack of awareness, rather than malicious intent,

is the driving factor behind lack of critical engagement with

LLMs. Awareness being a precursor to behavioral change [21],

makes raising awareness of GPT limitations crucial [5].

Our findings further justify the need of university guide-

lines [19]. However, instead of only raising awareness that

students need to critically evaluate the GPT they are inter-

acting with, university guidelines should also indicate com-

petencies [5, 24] required for critical evaluation, along with

instructions on how to gain such competencies.
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5.1.2 Current Guidelines are Inactionable and Inequitable. Our
findings indicate that the general student population will likely

struggle to critically evaluate university LLMs under current

university guidelines, making such guidelines inactionable.

Thus, those existing guidelines place unrealistic demands on

students, who, lacking specific guidance, are forced to shoulder

the responsibility of evaluating LLMs on their own.

Improving students’ AI literacy could alleviate some of the

burden. We found that currently AI literacy skills were devel-

oped only in technical students [50] and those with exposure

to related concepts via formal education. However, translat-

ing learnt concepts from formal education [52, 58, 77, 80] in

everyday settings was hard even for technical students. By

simultaneously forcing responsibility and disregarding stu-

dents’ individual abilities, such guidelines further exacerbate

academic inequalities [40], pointing to the need for consider-

ing equitable outcomes when constructing policy [19, 82].

5.2 RQ2: Effects of Auditing Scaffolding

Our findings indicate that providing students with end-user

auditing scaffolding enhanced their ability to identify and

document biases in LLMs by fostering focused and methodical

critical thinking when evaluating LLMs (RQ2).

5.2.1 Towards Focused, Methodical Student-led Auditing. Prior
to scaffolding guidance, our participants used opportunistic,

but not systematic prompting strategies [122] to investigate

biases in LLMs. Frequent GPT users recreated biases they had

previously encountered, leading to unfocused investigations.

Post-scaffolding, students significantly improved their analy-

sis, honing in on specific wording, nuances, and tone.

Initially struggling to create hypothesis-driven prompts,

students benefited from concrete examples provided by scaf-

folding. They shifted from random topic exploration to focused

scenario-based learning within a single domain. After scaffold-

ing was removed, some expanded their queries to domains

like governance, police work, and societal standards of beauty.

Students stopped using brute-force methods to surface bi-

ases, and started to emulate effective prompt structures, con-

testing and holding GPT accountable for its biases. In the

post-scaffolding stage, their auditing became more intentional,

methodical, and purposeful, involving detailed experimenta-

tion and nuanced prompt adjustments, ultimately producing

comprehensive audit reports.

5.2.2 Enhanced Critical Thinking with Scaffolding. We found

that structured guidance significantly enhanced students’ crit-

ical thinking when evaluating LLM biases. In the hypothesis

stage [103], students developed folk theories of LLM bias ori-

gins relying on social and technical factors. Students with

greater AI literacy skills relied on their understanding of how

machine learning (ML) algorithms learn from data and steps

in training ML models [72] to theorize bias origins in tech-

nical mode of thinking. Other students theorized that biases

arise when GPT makes assumptions similar to humans. This

in turn, shaped their interactions with the LLM. Depending

on social or technical mode of thinking, students focused on

testing concepts in social subjects such as inclusivity and race,

or technical capabilities such as writing and research support.

However, interacting with scaffolding example developed

complementary expertise. Students with social mode of think-

ing sought technical explanations of biases, while those with

technical mode of thinking attempted understanding biases

in a more socio-technical manner. Our findings thus extend

prior work [103] by showing that users benefit from expert

guidance, which we provide in the form of a scaffolding.

5.3 RQ3: Helping Students Deal with LLMs

Our findings indicate that students engaged in active learning

through the auditing activity. This underscores the need for

designing educational interventions that facilitate hands-on

exploration of AI systems. Here, we draw connections between

our findings and potential designs that go beyond delegating

the responsibility for evaluating LLMs to students (RQ3).

5.3.1 Designing Equitable LLM Use Policy. Our study findings
showed that all of our participants found current university

guidelines confusing; though, those with higher AI literacy

skills were better equipped to critically evaluate LLMs on

their own. Thus, a “one-size-fits-all” approach to formulat-

ing policy and guidelines may be inequitable. Equitable and

effective guidelines should not only involve students in the

policy-making process [126], ensuring that their voices are rep-

resented, but also shift the responsibility of evaluating LLMs

from students to technology creators and providers. Thus, poli-

cies should hold universities accountable for mitigating biases

in LLMs, promoting algorithmic responsibility by requiring

regular audits and publicly sharing the results.

5.3.2 Designing Learning Environments All Students. Although
our findings show the value of formal classroom education

in developing AI literacy and AI evaluation skills, they also

point to design opportunities for creation of informal learning

environments and tools. Our participants without formal AI

education engaged in active learning as they observed how

the model response changes when they rephrase and add more

details to prompts. They then leveraged what they learnt to

construct effective prompts aligned with their evaluation goals.

These findings inform the design of educational environments

and curricula [10, 48] that incorporate a constructionist ap-

proach to educational interventions [30, 61, 83].

We also found that low AI literacy users sought explana-

tions about what LLMs can do and how they work, either from

the LLM itself or external online resources, after observing

biased model behavior. Thus, our findings point to opportuni-

ties for designs that incorporate interactive explanations [11]

that support students’ sense-making needs [17], in particular

those that help explain the strengths and limitations of LLMs.

However, vast majority of the public is not AI literate [120],

and gaining AI literacy through formal education is not feasi-

ble for everyone [74]. Thus, our work has implications for de-

signs that foster learning AI literacy skills in informal settings,
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Figure 7: Despite critical evaluation goals of the university being vastly different from OpenAI’s user engagement

goals, there was a striking similarity between (a) ChatGPT and (b) U-M GPT interface designs at the time of our study.

such as libraries, public spaces and museums [71, 72, 115].

Thus, by designing accessible and engaging educational in-

terventions, we can foster AI literacy that caters to a broader

audience beyond traditional academic environments.

5.3.3 Designing for Responsible LLM Use in Education. Uni-
versities’ goal of responsible LLM use in an educational setting

vastly differs from OpenAI’s goal of maximizing user engage-

ment. Yet, the interface design of educational and commercial

GPT tools, including how they communicate their guidelines

for responsible use, remains the same (Fig 7).

Our findings inform future interfaces that promote criti-

cal reflection on LLMs (e.g., our end-user audit scaffolding,

self-reflection prompts [66], highlighting uncertain LLM out-

puts [117]) in a way that could help students shoulder the

burden of evaluating LLMs. However, our findings also point

to an immediate need to design LLM tools for specific educa-

tional tasks with interfaces that can be covered by meaningful

and enforceable responsible use policy.

One of the main challenges of such an open-ended chatbot

interface is that it is hard to create and communicate meaning-

ful and enforceable policy that covers different ways in which

students can prompt the LLM and ways in which the LLM can

respond; i.e., the “policy surface area” of such a design is very

large. Thus, it is important to replace the chatbot interface

with designs for specialized educational “tools” that “wrap

around” the LLM to support specific tasks in education.

6 Conclusion and Future Work

In this paper, we investigated how students critically engage

with LLMs through an end-user auditing activity. Our key

finding was that current university policies fall short of ef-

fectively supporting students with critical engagement, and

instead defer the responsibility to students who struggle with-

out structured support. Our study reveals that students default

to their prior knowledge in the absence of structured sup-

port, which could further exacerbate academic inequalities

as students with higher AI literacy skills are better equipped

to critically engage with LLMs than those without. However,

students demonstrate better critical engagement through both

cognitive processes and behavioral changes when provided

with structured support through an auditing scaffolding.

Our findings add to the discourse on the use of LLMs in

education [1, 23, 32], supporting how user-led auditing can

promote critical thinking skills in diverse populations [75, 107],

including students. Our work opens up opportunities for fu-

ture research, including critical examination of existing edu-

cational policies and their limitations in supporting diverse

student population, as well as interface design that can pro-

mote critical thinking in everyday interactions. Although our

work investigated how students critically engaged with LLMs,

the findings are relevant to the broader HCI community in-

terested in promoting critical engagement with LLMs among

end users through a learner-centered lens.
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