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Abstract—This paper proposes an Integrated Algorithm based on 
Deep Learning with Stacked Autoencoders (SAE) and Support 
Vector Regression(SVR), it is also for the first time that applies a 
typical Deep Learning algorithm SAE to Foreign Exchange(FX) 
time series forecasting. We adopt 28currency pairs pertaining to 
G7 currencies and RenMinBi, and collect the real daily FX data 
for simulation. To implement the empirical study, we develop the 
program independently for SAE-SVR Integrated Algorithm, and 
benchmark the results with ANN and SVR model, which are 
considered as the best performance in Artificial Intelligence. 
Ultimately, the simulation results indicates that the SAE-SVR 
integrated algorithm performs much better over other 
benchmarks. 

Keywords-Deep Learning; Stacked Autoencoders; Time Series 
Forecasting; Foreign Exchange 

I. INTRODUCTION 

Since the collapse of Bretton Woods Agreement in 1973, 
the foreign exchange market has become the most influential 
market in financial world, with an average daily turnover for 
global foreign exchange market of $5345 billion1. Increasingly, 
Foreign Exchange rate plays a significant roll not only in 
people who engaged in the financial fields, but also in 
entrepreneurs and international-level macroeconomic relations 
and strategy measures. Therefore, it arises an ascending 
number of governments, economists and financial institution’s 
interest in developing high accuracy techniques for forecasting 
Foreign Exchange(FX) time series[1]. 

Taking it by and large, the main approaches on this problem 
have proceeded on three fronts in the literatures. First of all, a 
majority of research efforts adopt the time-dependent 
conditional heteroskedasticity into standard models and use 
volatility as a key parameter. These models belong to the 
ARCH and GARCH approaches intitiated by Engle and 
Bollerslev. In addition, there are the fundamental models 
attempting to project the exchange rates based on rational 
expectations hypotheses involving major macroeconomical 
figures. These models are established on the foundations of 

                                                           
1 Source: The latest statistics of BIS (Bank for International 

Settlements) Triennial Central Bank Survey in the size and 
structure of global foreign exchange and OTC derivatives 
markets (updated 13 September 2015). 

supply and demand of domestic currency compared with a 
foreign currency. Ultimately, there are an increasing number of 
studies recently begin to focus on artificial intelligent 
approaches to forecast exchange rate. This category mostly 
uses time-series statistics to predict currency movements and is 
proven to be outperformed than the traditional approaches[2]. 
Optimized Algorithms of Artificial Neural Networks (ANN) 
are best performed and most common in Artificial 
Intelligence(AI) field for the moment, But ANN can still not go 
beyond one or two hidden layers for the problematic non-
convex optimization, therefore the difficult problem of learning 
in deep networks for higher precision is left dormant. 

However, in 2006, Geoffrey Hinton et al. rekindled interest 
in ANN by showing substantially better performance by a 
“deep” neural network that proved successful at learning their 
parameters[3-4]. Deep learning algorithms trained in this 
fashion have been shown empirically to avoid getting stuck in 
the kind of poor solutions one typically reaches with only 
random initialization[5-6]. While until now there are few 
people make empirical study of time series modeling with the 
typical deep neural network naming Stacked 
Autoencoder(SAE)[7-8], which consists of multiple layers of 
sparse autoencoders and the outputs of each layer is wired to 
the inputs of the successive layer[9-10]. 

Under this circumstance, this paper takes a novel 
perspective on the problem of optimizing the forecasting 
precision by proposing a Deep Learning with Stacked 
Atutoencoders(SAE) and Support Vector Regression(SVR) 
Integrated Algorithm to overcome the drawbacks contained in 
statistic models and artificial neural networks. The innovative 
proposed methodology could be adapt to different currencies 
exchange rate and even various time series. 

II. THE FX TIME SERIES FORECASTING MODEL 

A. The Deep Learning With SAE-SVR Integrated Model 
Structure 

In general, the time series forecasting model we proposed 
based on Deep Learning with Stacked Autoencoders(SAE) and 
Support Vector Regression(SVR) Integrated Algorithm 
combines the merits of SAE to deeply learn dataset features 
remarkably with the advantages of SVR’s superior predicting 
capacity for a more precise forecasting. Considering a network 



structure of deep learning with SAE-SVR Integrated Algorithm 
as shown in Figure1, it consists of one Input Layer, one Output 
Layer and K Hidden Layers. With this greedy layer-wise 
training method, each hidden layer can gradually learn part-
whole features of the dataset. 

 

Figure 1.  Deep Learning with SAE-SVR Integrated Algorithm Structure 

To be specific, during the implementation process, we train 
the SAE-SVR Integrated Algorithm layer by layer, and each 
layer represents a Sparse Autoencoder, which is illustrated in 
Figure2 below. 

For the first Sparse Autoencoder, we initiate the net-config 

as
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Figure 2.  The Deep Learning with SAE-SVR Integrated Algorithm 

FeedForward Substep Structure 

B. The Back-Propagation Fine-Tuning of Algorithm Model 

As is known, the output of the first Sparse Autoencoder 

is
(3) (3) (3) (3)

1 2{ , , ..., }NA a a a R  , while the real value of L3 equals to 

input 1 2{ , ..., }NX x x x R   according to attribute of Stacked 
Autoencoders. In the following, we conduct a Back-
Propagation algorithm to fine-tune the net-config during multi 
input loops for the first Sparse Autoencoder. 

Firstly, we define a training set as
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The concrete steps of Back-Propagation algorithm for the 
first sparse autoencoder are as follows: 

Step1: Perform a FeedForward process and obtain the 
activations for each unit and corresponding net-configs. 

Step2: For each unit i of ouput layer L3, set error 

value as: 

Identify applicable sponsor/s here. (sponsors) 
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Step3: For each unit i of hidden layer L2, set: 
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Step4: Calculate the desired partial derivatives 
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Step5: Update the net-config 
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Above all, the first Sparse Autoencoder learns itself with 
multi input loops during above fine-tune procedure to obtain 
more precise forecasting results. However, the processes of 
training the remaining Sparse Autoencoders are similar to that 
of the first one, and the activations outputs of each layer is 

wired to the inputs of the successive layer, until the Kth 
activations obtained from process K-1 will be directly 
conducted as input of a SVR model. 

Last but not least, after all the K processes are 
accomplished, there will be a further Back-Propagation fine-
tune for the whole SAE-SVR Integrated Algorithm descend the 
error of prediction outcomes. What should be noted different is 
that we define the error value of the last layer as: 
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In the last layer, we compare the output directly with the 

real forecasting value 1( ,..., )MY y y R  of the dataset. 

III. DATA COLLECTION AND TESTING 

In this paper, we base the Foreign Exchange (FX) rate 
datasets on the G7 currencies (USD, GBP, EUR, JPY, AUD, 
CAD, CHF), and collect them on MetaTrader4 platform of 
FXCM. In view of the significant influences of RenMinBi, we 
additionally adopt CNY from SAFE (State Administration of 
Foreign Exchange) official website. Therefore, we use 28 
currency pair datasets in total illustrated in Table 1. 

TABLE1. THE 28 CURRENCY PAIR DATASETS 

 USD EUR GBP CAD AUD JPY CHF CNY 

USD — — — 5USDCAD — 11USDJPY 16USDCHF 22USDCNY 

EUR 1EURUSD — 4EURGBP 6EURCAD 9EURAUD 12EURJPY 17EURCHF 23EURCNY 

GBP 2GBPUSD — — 7GBPCAD 
10GBPAU

D 
13GBPJPY 18GBPCHF 24GBPCNY 

CAD — — — — — 14CADJPY 19CADCHF 25CADCNY 

AUD 3AUDUSD — — 8AUDCAD — 15AUDJPY 20AUDCHF 26AUDCNY 

JPY — — — — — — — 27JPYCNY 

CHF — — — — — 21CHFJPY — 28CHFCNY 

As for the data frequency and time span, we extract the 
daily FX data in MetaTrader4 and SAFE from 21st Mar 2009 
to 1st Feb 2016. Besides, we classify all the dataset into 

Training set and Testing set respectively for machine learning 
process, details are shown in Table 2. 

TABLE2. THE DETAILS OF 28 CURRENCY PAIR DATASETS 

Dataset No. Currency pair AllData Bulk Start Date Expiry Date TrainingSet Bulk TestingSet Bulk 
1--21 See Table1 2048*21 2009-03-20 2016-02-01 1548*21 500*21 

22 USDCNY 1782 2008-10-06 2016-02-01 1282 500 
23 EURCNY 1782 2008-10-06 2016-02-01 1282 500 
24 GBPCNY 1782 2008-10-06 2016-02-01 1282 500 
25 CADCNY 1014 2011-11-28 2016-02-01 514 500 
26 AUDCNY 1014 2011-11-28 2016-02-01 514 500 
27 JPYCNY 1782 2008-10-06 2016-02-01 1282 500 
28 CHFCNY 59 2015-11-10 2016-02-01 39 20 

Sum ---- 52223 ---- ---- 38703 13520 
Before we conduct the simulation test, firstly, the data 

should be normalized between [0, 1] scale, for each currency 

pair time series data 1 2( , ,..., )TS s s s , the conversion formula is: 
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Then we get the normalized currency pair time 

series 1 2( , ,..., )TZ z z z , secondly, the normalized 

1 2( , ,..., )TZ z z z  will be transformed into a L-lag-window 

multi-dimension time series vector 
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While the output vector is a one-dimensional time series 
vector: 

1( ,..., )MY y y R 
 

Where n n Ly z  , and ny
indicates the forecasting value of 

1( ,..., ) ' L
n n n LX z z R   . Finally, we get the 28 time series 

input and output vectors after preprocessing. 

The methodology we proposed for prediction with Stacked 
Autoencoders and SVR model is based on Non-stationary and 
Nonlinear time series. Therefore, this section aims to test 
Nonlinear and Non-stationary attributes of the dataset by using 
Normality and Unit Root Tests respectively. On the one hand, 
we adopt the well-known test Augmented Dickey-Fuller for 
unit root test to validate the Non-stationary attribute of the 28 
currency pair time series. On the other hand, we take use of 
Jarque-Bera Test to implement the Normality Test of the 28 
currency pair time series with help of Eviews Tool, the results 
could not illustrated for lack of space. However, the Unit Root 
Test and Normality Test results show that the 28 datasets 
mostly conform to the Non-stationary and Nonlinear attributes 
and could be used in our proposed integrated algorithm. 

IV. SIMULATION AND RESULTS 

In this paper, we estimate the error with MAE (Mean 
Absolute Error), MSE (Mean Square Error), RMSE (Root 
Mean Square Error) as criteria for assessing the validity of our 
integrated algorithm. 
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Where 
ˆ

iy
is the predicted value of corresponding iy . 

The simulation environment is based on Matlab R2015a 
platform in 32-bit Windows7, as to the innovative SAE-SVR 
integrated algorithm, we refer to the UFLDL Tutorial of Deep 
Learning curriculum offered by Stanford University, and 
develop the codes independently. In addition, we benchmark 
our SAE-SVR integrated algorithm with another two artificial 
intelligence models: ANN (Artificial Neural Network), and 
SVR (Support Vector Regression), the ANN model is 
conducted with Neural Network Time Series Toolbox in 
Matlab R2015a, while the SVR model is implemented with 
LIBSVM 3.12 Toolbox.  

To be more concrete, the main program implement steps for 
the SAE-SVR integrated algorithm come down to: 

Step1: Provide the relevant parameters, involving inputSize, 
hiddenSizeL1,…,hidenSizeLn, sparsityParam, lambda, beta, 
alpha, etc. 

Step2: Load normalized vectors data, including Training 
Set and Testing Set. 

Step3: Train the first Sparse Autoencoder with training set 
as input vector, and get the trained net-config ‘sae1Theta’, then 
optimize ‘sae1Theta’ with SparseAECost function to obtain 
‘sae1OptTheta’, and further conduct feedForwardAutoencoder 
function to achieve the first feature vector ‘sae1Features’. 

Step4: Train the second Sparse Autoencoder, set the 
‘sae1Features’ as input vector and obtain ‘sae2Theta’, 
‘sae2OptTheta’, and ‘sae2Features’. ‘Sae2Features’ is the input 
vector of the next step. 

Step5: By that analogy, accomplish training N layer 
Stacked Autoencoders, until the Nth output vector 
‘saeNFeatures’. 

Step6: Set ‘saeNFeatures’ as input vector to train the SVR 
model, and get the output ‘svmoutput’. 

Step7: Fine-tune the whole SAE-SVR Algorithm: make a 
comparison between the model output ‘svmoutput’ with real 
forecasting value ‘y’, and fine-tune the model config with 
stackedAECost function, the updated parameters are saved in 
stack{}. 

Step8: Predict the testing set with optimized SAE-SVR 
Algorithm after fine-tuning, achieve the forecasting values with 
stackedAEPredict function, and evaluate MSE, RMSE, MAE 
results. 

However, the SAE-SVR Integrated Algorithm flow chart is 
illustrated below in Figure3: 

 

Figure 3.  The SAE-SVR Integrated Algorithm Flow Chart 



Eventually, the simulation outcomes of the SAE-SVR Integrated Algorithm are summarized in Table3 below: 

TABLE3. THE SIMULATION OUTCOMES OF SAE-SVR INTEGRATED ALGORITHM 

DataSet MSE MAE RMSE DataSet MSE MAE RMSE 

1EURUSD 2.88E-04 0.02234 0.016981343 8AUDCAD 1.57E-04 0.01089 0.012513113 

2GBPUSD 6.09E-04 0.01169 0.024677135 9EURAUD 4.12E-05 0.00513 0.006416206 

3AUDUSD 1.95E-04 0.01012 0.01397165 10GBPAUD 2.77E-04 0.01465 0.016632949 

4EURGBP 2.51E-04 0.01149 0.015852855 11USDJPY 2.12E-04 0.01577 0.014573435 

5USDCAD 1.82E-04 0.00922 0.013475793 12EURJPY 7.06E-05 0.00655 0.008399655 

6EURCAD 1.44E-04 0.00984 0.011981319 13GBPJPY 9.14E-05 0.0082 0.009560063 

7GBPCAD 2.40E-04 0.01808 0.015485768 14CADJPY 1.70E-04 0.00939 0.013043121 

DataSet MSE MAE RMSE DataSet MSE MAE RMSE 

15AUDJPY 5.06E-05 0.0089 0.007110471 22USDCNY 3.11E-04 0.0099 0.017630116 

16USDCHF 3.42E-05 0.00788 0.005845439 23EURCNY 2.94E-04 0.01578 0.017139049 

17EURCHF 7.01E-05 0.0049 0.008370759 24GBPCNY 1.68E-04 0.01114 0.012952683 

18GBPCHF 9.99E-05 0.00541 0.009996749 25CADCNY 3.20E-04 0.01675 0.01789905 

19CADCHF 4.82E-05 0.00978 0.006940519 26AUDCNY 3.63E-04 0.01772 0.019063997 

20AUDCHF 9.80E-05 0.01181 0.009900909 27JPYCNY 1.32E-04 0.00086 0.011479983 

21CHFJPY 4.14E-05 0.00835 0.006437608 28CHFCNY 1.92E-05 0.00438 0.004377614 

Comparing with the ANN and SVR model, the 28datesets 
simulation results are aggregated in Table4 below, from which 
we can tell, ANN model performs much better than SVR model 
in predicting foreign exchange rate, so we contrast SAE-SVR 
model directly to ANN model with calculation formula: 
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The promoted column reveals that in 28 entire datasets, 
although the SAE-SVR model performs not better than ANN in 
9 currency pairs involving 1EURUSD, 5USDCAD, 7GBPCAD, 
10GBPAUD, 11USDJPY, 22USDCNY, 23EURCNY, 
25CADCNY, 26AUDCNY, the other 21 currency pairs 
datasets all indicate a better performance than ANN and SVR 
model. Further we calculate the Sum Up of the SAE-SVR’s 
proposed performance, it shows that the SAE-SVR is more 
than 6 times better than ANN model in MSE criteria, and more 
than 2 times better than ANN in MAE criteria, which come to 
the conclusion that the SAE-SVR Integrated Algorithm we 
proposed is attained with distinction. 

TABLE4. THE AGGREGATED 28 DATASETS SIMULATION RESULTS OF ANN, SVR, SAE-SVR MDOELS 

DataSet 
Name 

ANN 
MSE 

SVR 
MSE 

SAE-SVR 
MSE 

Promoted ANN 
MAE 

SVR 
MAE 

SAE-SVR 
MAE 

Promoted 

1EURUSD 2.7307e-04 0.0026098 2.88E-04 -5.60% 0.0122 0.0399 0.02234 -83.11% 
2GBPUSD 6.8046e-04 0.0011528 6.09E-04 10.51% 0.0193 0.0272 0.01169 39.43% 
3AUDUSD 2.3025e-04 0.0003145 1.95E-04 15.22% 0.0113 0.0143 0.01012 10.44% 
4EURGBP 2.6657e-04 0.0015129 2.51E-04 5.72% 0.0122 0.0307 0.01149 5.82% 
5USDCAD 1.3537e-04 0.0022363 1.82E-04 -34.15% 0.0085 0.0332 0.00922 -8.47% 

6EURCAD 2.9867e-04 0.0005757 1.44E-04 51.94% 0.0126 0.0189 0.00984 21.90% 
7GBPCAD 2.2838e-04 0.0007986 2.40E-04 -5.00% 0.0167 0.0215 0.01808 -8.26% 
8AUDCAD 4.8400e-04 0.00068021 1.57E-04 67.65% 0.0167 0.0198 0.01089 34.79% 
9EURAUD 1.3568e-04 0.00024962 4.12E-05 69.66% 0.0084 0.0114 0.00513 38.93% 
10GBPAUD 2.1326e-04 0.00062255 2.77E-04 -29.73% 0.0109 0.0191 0.01465 -34.40% 
11USDJPY 1.4181e-04 0.00465398 2.12E-04 -49.77% 0.0088 0.0567 0.01577 -79.20% 
12EURJPY 2.7442e-04 0.00034466 7.06E-05 74.29% 0.0120 0.0142 0.00655 45.42% 
13GBPJPY 1.9389e-04 0.00141236 9.14E-05 52.86% 0.1299 0.0299 0.0082 93.69% 
14CADJPY 4.2757e-04 0.00055366 1.70E-04 60.21% 0.0149 0.0177 0.00939 36.98% 
15AUDJPY 3.6397e-04 0.0002919 5.06E-05 86.11% 0.0136 0.0129 0.0089 34.56% 
16USDCHF 2.8011e-04 0.0009669 3.42E-05 87.80% 0.0101 0.0154 0.00788 21.98% 
17EURCHF 1.9228e-04 0.0022557 7.01E-05 63.56% 0.0061 0.0304 0.0049 19.67% 
18GBPCHF 3.0714e-04 0.0010526 9.99E-05 67.46% 0.0103 0.0155 0.00541 47.48% 
19CADCHF 2.9759e-04 0.00111476 4.82E-05 83.81% 0.0107 0.0208 0.00978 8.60% 



20AUDCHF 4.1407e-04 0.0015979 9.80E-05 76.33% 0.0129 0.0268 0.01181 8.45% 
21CHFJPY 2.2217e-04 0.0014423 4.14E-05 81.35% 0.0086 0.0224 0.00835 2.91% 
22USDCNY 8.7996e-05 0.00103769 3.11E-04 -253.22% 0.0061 0.0135 0.0099 -62.30% 
23EURCNY 2.2732e-04 0.0017301 2.94E-04 -29.22% 0.0110 0.0318 0.01578 -43.45% 
24GBPCNY 4.5092e-04 0.00052641 1.68E-04 62.79% 0.0149 0.0163 0.01114 25.23% 
25CADCNY 1.7722e-04 0.0045405 3.20E-04 -80.78% 0.0097 0.0536 0.01675 -72.68% 
26AUDCNY 2.3929e-04 0.00255696 3.63E-04 -51.88% 0.0118 0.0403 0.01772 -50.17% 
27JPYCNY 1.9699e-04 0.00179411 1.32E-04 33.10% 0.0099 0.0349 0.00086 91.31% 
28CHFCNY 0.0187 0.0316333 1.92E-05 99.90% 0.0886 0.1728 0.00438 95.06% 

Sum Up --- --- --- 610.92% 
 

--- --- --- 240.61% 

V. CONCLUSIONS 

With the rapid variation in FX market, it brings an 
ascending number of attentions to make more precise 
forecasting for Foreign Exchange Rate. In this paper, we 
propose an innovative Integrated Algorithm based on Deep 
Learning with Stacked Autoencoders and SVR, we take a novel 
perspective to extract the high-dimensional abstract features 
from K layers Sparse Autoencoders and send the output 
activations into the SVR model for prediction. For the sake of 
verifying the integrated algorithm, we take advantage of FX 
real data pertain to G7 and RenMinBi currency pairs in 
MetaTrader4 platform as well as SAFE website, and normalize 
and test all the datasets before simulation. To implement the 
simulation, we develop the program independently referring to 
UFLDL Tutorial by Stanford University, and benchmark our 
SAE-SVR integrated algorithm with the best performed ANN 
and SVR model. Ultimately, the aggregated comparison 
indicates that the SAE-SVR integrated algorithm outperformed 
than ANN and SVR, which verifies the outperformance of this 
innovative algorithm. 

Moreover, the proposed algorithm has the potential ability 
to deal with massive a more complicated datasets, and more 
advanced optimization algorithm for parameter selection will 
be developed to enhance the forecasting accuracy. 
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