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NLP XAl Studies are Growing Rapidly
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Paragraph A, Return to Olympus:

[1] Return to Olympus is the only album by the alterna-
tive rock band Malfunkshun. (2] It was released after
the band had broken up and after lead singer Andrew
Wood (later of Mother Love Bone) had died of a drug
overdose in 1990. [3] Stone Gossard, of Pearl Jam, had
compiled the songs and released the album on his label,
Loosegroove Records.

Paragraph B, Mother Love Bone:

[4] Mother Love Bone was an American rock band that
formed in Seattle, Washington in 1987. [5] The band
was active f 1987 to 1990. [6] F iman Andnzu
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Attention mechanisms have seen wide adop-
lion in neural NLP models. In addition to

per these are
oﬂcn louled as aﬁordmg transparency: mod-
els equipped with attention provide a distribu-
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Prediction without justification has limited ap-
plicability. As a remedy, we learn to extract
pieces of input text as justifications - ratio-
nales — that are tailored to be short and co-
herent, yet sufficient for making the same pre-
diction. Our approach combines two modu-
lar components, generator and encoder, which
are trained to operate well together. The gen-
erator specifies a distribution over text frag-
mente ac candidate rationales and thaes ars
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Review

the beer was n’t what i expected, and i'm not sure it’s “true
to style", but i thought it was delicious. a very pleasant
ruby red-amber color with a relatively brilliant finish, but a
limited amount of carbonation, from the look of it. aroma is
what i think an amber ale should be - a nice blend of
caramel and happiness bound together.

Ratings

Look: 5 stars Smell: 4 stars

Figure 1: An example of a review with ranking in two cate-
gories. The rationale for Look prediction is shown in bold.



XAl Question Bank Shows Practical User Needs

Input

Output

Performance

How (global)

What Kind of data does the system learn from?
What is the source of the data?

How were the labels/ground-truth produced?

* What is the sample size?

* What data is the system NOT using?

* What are the limitations/biases of the data?

* How much data [like this] is the system trained on?
What kind of output does the system give?

What does the system output mean?

How can | best utilize the output of the system ?

* What is the scope of the system’s capability? Can it do...?
* How is the output used for other system component(s) ?

How accurate/precise/reliable are the predictions?

How often does the system make mistakes?

In what situations is the system likely to be correct/incorrect?
* What are the limitations of the system?

* What kind of mistakes is the system likely to make?

* Is the system’s performance good enough for...

How does the system make predictions?
What features does the system consider?
® * s [feature X] used or not used for the predictions?
What is the system’s overall logic?
® How does it weigh different features?
® What rules does it use?
® How does [feature X] impact its predictions?
® * What are the top rules/features it uses?
* What kind of algorithm is used?
® * How are the parameters set?

Why not

What If

How to be that

How to still be
this

Others

Why/how is this instance given this prediction?

What feature(s) of this instance leads to the system’s prediction?
Why are [instance A and B] given the same prediction?
Why/how is this instance NOT predicted...?

Why is this instance predicted P instead of Q?

Why are [instance A and B] given different predictions?

What would the system predict if this instance changes to...?
What would the system predict if this feature of the instance
changes to...?

What would the system predict for [a different instance]?

* How should this instance change to get a different prediction?
® How should this feature change for this instance to get a different

prediction?

What kind of instance gets a different prediction?

What is the scope of change permitted to still get the same

prediction?

What is the [highest/lowest/... ] feature(s) one can have to still
get the same prediction?

What is the necessary feature(s) present or absent to guarantee
this prediction?

What kind of instance gets this prediction?

* How/what/why will the system change/adapt/improve/drift
over time? (change)

* How to improve the system? (change)

* Why using or not using this feature/rule/data? (follow-up)

* What does [ML terminology] mean? (terminological)

* What are the results of other people using the system? (social)

(Liao, Q. V, et al, 2020)



How Well Can Existing NLP XAl
Research Respond to these Questions
that Users Care About?



We surveyed 200+ XAl Papers in NLP
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Matching 200+ Papers with XAl Question Bank?

Input

Others

43 User Questions

What Kind of data does the system learn from™ ID
What is the source of the data?

How were the labels/ground-truth produced?
* What is the sample size?

* What data is the system NOT using?

* What are the limitations/biases of the data?

® * How/what/why will the system change/adapt/improve/drift o1
over time? (change)

® * How to improve the system? (change) 215
® * Why using or not using this feature/rule/data? (follow-up) 216
® * What does [ML terminology] mean? (terminological) 217

218

218 NLP XAl Papers

Title Year Venue

" Why should | trust you?" Explaining the predictions of any classifier 2016 KDD
Visualizing and Understanding Neural Models in NLP 2016 NAACL
Rationalizing Neural Predictions 2016 EMNLP
BERT Rediscovers the Classical NLP Pipeline 2019 ACL
Attention is not Explanation 2019 NAACL

How much should you ask? On the question structure in QA systems 2018  BlackboxNLP
Interpretable Multi-dataset Evaluation for Named Entity Recognition 2020 EMNLP

A Survey of the State of Explainable Al for Natural Language Processin( 2020 AACL-IJCNLP
Explaining Simple Natural Language Inference 2019 ACL

Understanding Neural Abstractive Summarization Models via Uncertaint 2020

EMNLP

Paper URL

https://arxiv.org/pdf/1602.04938.
https://www.aclweb.org/antholog
https://people.csail.mit.edu/taole
https://www.aclweb.org/antholog
https://arxiv.org/pdf/1902.10186.

https://arxiv.org/pdf/1809.03734.
12011.06854.

https://arxiv.org/pdf/2010.00711.,

https://www.aclweb.org/antholog
https://arxiv.org/pdf/2010.07882.

https://arxiv.org/|



A Collection of XAl Forms

Probing

Free Text

Concept
/ Sense

(CPT)

Example

Projection
Space
(PSP)

ID

214
215
216
217
218

i | Tl | Gl | Ceh

218 NLP XAl Papers

Title

" Why should | trust you?" Explaining the predictions of any classifier
Visualizing and Understanding Neural Models in NLP

Rationalizing Neural Predictions

BERT Rediscovers the Classical NLP Pipeline

Attention is not Explanation

How much should you ask? On the question structure in QA systems
Interpretable Multi-dataset Evaluation for Named Entity Recognition

Year Venue

2016
2016
2016
2019
2019

2018
2020

A Survey of the State of Explainable Al for Natural Language Processin¢ 2020

Explaining Simple Natural Language Inference

2019

Understanding Neural Abstractive Summarization Models via Uncertaint 2020

KDD
NAACL
EMNLP
ACL
NAACL

BlackboxNLP
EMNLP
AACL-IJCNLP
ACL

EMNLP

Paper URL

https://arxiv.org/pdf/1602.04938.
https://www.aclweb.org/antholog
https://people.csail.mit.edu/taole
https://www.aclweb.org/antholog
https://arxiv.org/pdf/1902.10186.

https://arxiv.org/pdf/1809.03734.
https://arxiv.org/pdf/2011.06854.

https://arxiv.org/pdf/2010.00711.,

https://www.aclweb.org/antholog
https://arxiv.org/pdf/2010.07882.



A Collection of XAl Forms

1 - Feature Attribution (FAT)

Concept PY
/ Sense

Feature
Attribution
(FAT)

Definition: highlight the subsequence in input texts

(cPT) e Typical User Question: “How can we attribute the Al

systems’ predictions to input features?”

Probing Free Text Example Projection

Space Interpret Prediction
(PSP)
QUESTION
Trigger Images What do [fobots that resemble humans attempt to @g)?
(IMG) ¢

Visualizing the top 4 most important words.

(Wallace, Eric, et al, 2019)
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Matching Each User Question with XAl Forms

XAl Question Bank

R[OTAL LI 1IN Q19 - How does the system make predictions?



Matching Each User Question with XAl Forms

XAl Question Bank

[ AA(I[IEVN Q19 - How does the system make predictions?

N=717
Accuracy: 0.555
Split: Posting

Yes
Contribution: -0.089

N=137
Accuracy: 0.015
N=66
Accuracy: 0

No
Contribution:0

N=580
Accuracy: 0.683

Split: rutgers

Yes
Contribution: 0.043

N=71
Accuracy: 0.028
N=172
Accuracy: 1

No
Contribution:0,

N=408
Accuracy: 0.549

(Yang, C., et al, 2018)
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Matching Each User Question with XAl Forms

XAl Question Bank

[ AA(I[IEVN Q19 - How does the system make predictions?

if {“not”, “bad”} in input:

Rule / then
Grammar

(RUL)

if {“not”, “good”} in input:

then

(Ribeiro, M. T., et al, 2018) 7



Matching Each User Question with XAl Forms

XAl Question Bank

R[OTAL LI 1IN Q19 - How does the system make predictions?

V-3l Training Examples:

@ e This gem for gore lovers is extremely underrated. It's pure delight
and fun! .....

® Project A ll is a classic Jackie Chan movie with all the kung fu,
crazy stunts and slapstick humor you expect.......

Training Examples:

e Believe it or not, this was at one time the worst movie | had ever
seen. ...

e Great story and great lead actors (Quaid and Ryan) but the movie
suffers from bad directing, bad screenplay and bad script.......

Example
(EXP)

(Koh, P. W., & Liang, P, 2017)



Matching Each User Question with XAl Forms

XAl Question Bank

R[OTAL LI 1IN Q19 - How does the system make predictions?

10.15% 9.61%
Rule /
Grammar Example
(EXP)

(RUL)

Paper#2 Paper#36 Paper#49 Paper#128 Paper#153 Paper#203 Paper#216




Matching Each User Question with XAl Forms

XAl Question Bank
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Findings

1-What kind of data does the system learn from? EXP 3.86%
2-What is the source of the data? *
3-How were the labels/ground-truth produced? *
Input/Data K . S

(0.55%) 4-What is the sample size? *
5-What data is the system NOT using? [}
6-What are the limitations/biases of the data? °
7-How much data [like this] is the system trained on? *
8-What kind of output does the system give? EXP 3.86%
9-What does the system output mean? *

gl;t;’;t) 10-How can | best utilize the output of the system? o

77% A
N e What if /
d ’ ?
11-What is the scope of the system’s capability? ° How to be
12-How’s the output used for other systems modules? o (15.54%)
13-How accurate/precise/reliable are the predictions? CFD 1.18%
14-How often does the system make mistakes? *
Performance  15-In what situations is the system to be incorrect?  CFD/EXP/TRG 5.97%
(2.03%) 16-What are the limitations of the system? [ ]

17-What kind of mistake is the system likely to make? EXP 5.05%

?
18-Is the system’s performance good enough for.. Others

sttt ssmosissricre? . memior B (1400
20-What features does the system consider? _
21-What is the system’s overall logic?
*

22-What kind of algorithm is used?

How

(Global)
(30.31%)

0.0%

23-Why/how is this instance given this prediction? RUL/TUP/FAT/FRT/EXP
24-What instance feature leads to the system’s prediction? 43.99%
25-Why are [instance A and B] given the same prediction? RUL/TUP/FAT/FRT/EXP 74.70%

26-Why/how is this instance NOT predicted? TRG 0.93%
27-Why is the instance predicted P instead of Q? TRG 0.93%

28-Why are [instance A and B] given different predictions? TRG/RUL/TUP/FAT/FRT/EXP |75.62%

29-What would the system predict if this instance changes to ..? CFD/EXP/TRG 5.97%

30-What would system predict if this instance feature changes to..? CFD/FAT/TRG |46.10%

31-What would the system predict for [a different instance]? CFD/TRG 2.11%
32-How should this instance change to get a different prediction? TRG 0.93%
33-How should instance feature change to get different prediction? TRG 0.93%
34-What kind of instance gets a different prediction? TRG/EXP 4.79%
35-What's the scope of change permitted to get the same prediction? TRG 0.93%

36-What's the highest feature can have to get the same prediction? TRG/FAT 44.91%
37-What is necessary feature present to guarantee this prediction? TRG/FAT 44.91%

38-What kind of instance gets this prediction? EXP 3.86%
39-How/what/why will the system change/improve/drift over time? [ ]
40-How to improve the system”

42-What does [ML terminology] mean?

43-What are the results of other people using the system? )

© [tttk 100.0%
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Input/Data
(0.55%)

Output
(0.77%)

Performance
(2.03%)

How
(Global)

(30.31%)

1-What kind of data does the system learn from?
2-What is the source of the data?

3-How were the labels/ground-truth produced?
4-What is the sample size?

5-What data is the system NOT using?

6-What are the limitations/biases of the data?

7-How much data [like this] is the system trained on?

8-What kind of output does the system give?
9-What does the system output mean?

10-How can | best utilize the output of the system?
11-What is the scope of the system’s capability?

12-How’s the output used for other systems modules?

13-How accurate/precise/reliable are the predictions?
14-How often does the system make mistakes?
15-In what situations is the system to be incorrect?
16-What are the limitations of the system?

17-What kind of mistake is the system likely to make?

18-Is the system’s performance good enough for...?

EXP 3.86%
*
*
*
[
[
*
EXP 3.86%
*
°
°
[
CFD 1.18%
*
CFD/EXP/TRG 5.97%
[
EXP 5.05%

20-What features does the system consider? _

21-What is the system’s overall logic?

22-What kind of algorithm is used?

RUL/FAT

23-Why/how is this instance given this prediction? RUL/TUP/FAT/FRT/EXP
24-What instance feature leads to the system’s prediction? 43.99%

25-Why are [instance A and B] given the same prediction? RUL/TUP/FAT/FRT/EXP

26-Why/how is this instance NOT predicted? TRG

27-Why is the instance predicted P instead of Q? TRG 0.93%
29-What would the system predict if this instance changes to ..? CFD/EXP/TRG 5.97%
31-What would the system predict for [a different instance]? CFD/TRG 2.11%
32-How should this instance change to get a different prediction? TRG 0.93%
What if / 33-How should instance feature change to get different prediction? TRG 0.93%
How to be
(15.54%)  34-What kind of instance gets a different prediction? TRG/EXP  4.79%
35-What's the scope of change permitted to get the same prediction? TRG 0.93%

Others
(11.49%)

0.0%

36-What's the highest feature can have to get the same prediction? TRG/FAT 44.91%
37-What is necessary feature present to guarantee this prediction? TRG/FAT 44.91%

38-What kind of instance gets this prediction? EXP 3.86%

39-How/what/why will the system change/improve/drift over time? [ ]

40-How to improve the system?

41-Why using or not using this feature/rule/data?

42-What does [ML terminology] mean?

43-What are the results of other people using the system? )

I 100.0%

© 9 out of 43 questions: how Al systems CAN provide specific predictions



Findings

1-What kind of data does the system learn from? EXP 3.86%
3-How were the labels/ground-truth produced? * 25-Why are [instance A and B] given the same prediction? RUL/TUP/FAT/FRT/EXP
In(%ustlsliz/:)t a 4-What is the sample size? * 26-Why/how is this instance NOT predicted? TRG 0.93%
5-What data is the system NOT using? [} 27-Why is the instance predicted P instead of Q? TRG 0.93%
6-What are the limitations/biases of the data? °
7-How much data [like this] is the system trained on? * 29-What would the system predict if this instance changes to ..? CFD/EXP/TRG 5.97%
8-What kind of output does the system give? EXP 3.86%
9-What does the system output mean? * 31-What would the system predict for [a different instance]? CFDTRG  211%
Outp“ut 10-How can | best utilize the output of the system? ° 32-How should this instance change to get a different prediction? TRG 0.93%
(0-77%) I 11-What is the scope of the system’s capability? ° v::'va::fbli 33-How should instance feature change to get different prediction? TRG 0.93%
12-How’s the output used for other systems modules? ®  (15.54%)| 34-Whatkind of instance gets a different prediction? TRGIEXP  4.79%
13-How accuratelpreciselreliable are the predictions? & P 35-What's the scope of change permitted to get the same prediction? TRG 0.93%

14-How often does the system make mistakes? * 36-What's the highest feature can have to get the same prediction?
Perf 15-In what situations is the system to be incorrect?  CFD/EXP/TRG 5.97% TRGIFAT _J44.91%
erformance -

(2.03%) 16-What are the limitations of the system? 5 38-What kind of instance gets this prediction? EXP 3.86%
17-What kind of mistake is the system likely to make? EXP 5.05% 39-How/what/why will the system change/improve/drift over time? [ ]
40-H h, d
18-Is the system’s performance good enough for...? W e 8 A W SvAfiT

O Others
! Y4 FAT/RUL/EXP |57.46%
How 20-What features does the system consider? 43.99%
(Global)

43-What are the results of other people using the system? )
(30.31%) 21-What is the system’s overall logic?
22-What kind of algorithm is used? * 0.0% I 00.0%

© 16 out of 43 questions: what Al systems CANNOT achieve



Explaining the Road Not Taken

Users are interested in explanations for the road
not taken -- namely, why Al chose current
prediction instead of a legitimate counterpart



1 Website: https://human-centered-exnlp.qithub.io/

Open 200+ NLP Explanation Form Annotations

Title

* Why should | trust you?* Explaining the predictions of any classifier

A causal framework for explalning the predictions of black-box sequence-to-sequence
models

A Diagnostic Study of Explainability Technlques for Text Classification

A Meaning-based English Math Word Problem Solver with Understanding, Reasoning and
Explanation

A primer In bertology: What we know about how bert works

A Shared Attention Mechanism for Interpretation of Neural Automatic Post-Editing Systems

A structural probe for finding syntax in word representations

A Survey of the State of Explainable Al for Natural Language Processing

Allennip interpret: A framework for explaining predictions of nlp models

An Information Bottieneck Approach for Controliing Conciseness in Rationale Extraction
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